» Articles » PMID: 37945903

Characterizing Prostate Cancer Risk Through Multi-ancestry Genome-wide Discovery of 187 Novel Risk Variants

Overview
Journal Nat Genet
Specialty Genetics
Date 2023 Nov 9
PMID 37945903
Authors
Affiliations
Soon will be listed here.
Abstract

The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups.

Citing Articles

Ancestry-Specific DNA Damage Repair Gene Mutations and Prostate Cancer.

Borbiev T, Babcock K, Sinopole K, Chesnut G, Petrovics G Cancers (Basel). 2025; 17(4).

PMID: 40002276 PMC: 11853348. DOI: 10.3390/cancers17040682.


Assessing the contribution of rare protein-coding germline variants to prostate cancer risk and severity in 37,184 cases.

Mitchell J, Camacho N, Shea P, Stopsack K, Joseph V, Burren O Nat Commun. 2025; 16(1):1779.

PMID: 39971927 PMC: 11839991. DOI: 10.1038/s41467-025-56944-1.


ANO7 expression in the prostate modulates mitochondrial function and lipid metabolism.

Lof C, Sultana N, Goel N, Heron S, Wahlstrom G, House A Cell Commun Signal. 2025; 23(1):71.

PMID: 39923095 PMC: 11807338. DOI: 10.1186/s12964-025-02081-7.


Exploring the causal role of plasma metabolites and metabolite ratios in prostate cancer: a two-sample Mendelian randomization study.

Feng C, Li H, Zhang C, Zhou Y, Zhang H, Zheng P Front Mol Biosci. 2025; 11():1406055.

PMID: 39834784 PMC: 11743260. DOI: 10.3389/fmolb.2024.1406055.


Intersection of rare pathogenic variants from TCGA in the All of Us Research Program v6.

Bates B, Bates K, Boris S, Boris S, Wessman C, Stone D HGG Adv. 2025; 6(2):100405.

PMID: 39799398 PMC: 11830373. DOI: 10.1016/j.xhgg.2025.100405.


References
1.
Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx B . Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016; 48(3):245-52. PMC: 4767558. DOI: 10.1038/ng.3506. View

2.
Tian J, Wang Z, Mei S, Yang N, Yang Y, Ke J . CancerSplicingQTL: a database for genome-wide identification of splicing QTLs in human cancer. Nucleic Acids Res. 2018; 47(D1):D909-D916. PMC: 6324030. DOI: 10.1093/nar/gky954. View

3.
Peltonen L, Altshuler D, de Bakker P, Deloukas P, Gabriel S, Gwilliam R . Integrating common and rare genetic variation in diverse human populations. Nature. 2010; 467(7311):52-8. PMC: 3173859. DOI: 10.1038/nature09298. View

4.
Mancuso N, Gayther S, Gusev A, Zheng W, Penney K, Kote-Jarai Z . Large-scale transcriptome-wide association study identifies new prostate cancer risk regions. Nat Commun. 2018; 9(1):4079. PMC: 6172280. DOI: 10.1038/s41467-018-06302-1. View

5.
Kurki M, Karjalainen J, Palta P, Sipila T, Kristiansson K, Donner K . FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023; 613(7944):508-518. PMC: 9849126. DOI: 10.1038/s41586-022-05473-8. View