» Articles » PMID: 26854917

Integrative Approaches for Large-scale Transcriptome-wide Association Studies

Abstract

Many genetic variants influence complex traits by modulating gene expression, thus altering the abundance of one or multiple proteins. Here we introduce a powerful strategy that integrates gene expression measurements with summary association statistics from large-scale genome-wide association studies (GWAS) to identify genes whose cis-regulated expression is associated with complex traits. We leverage expression imputation from genetic data to perform a transcriptome-wide association study (TWAS) to identify significant expression-trait associations. We applied our approaches to expression data from blood and adipose tissue measured in ∼ 3,000 individuals overall. We imputed gene expression into GWAS data from over 900,000 phenotype measurements to identify 69 new genes significantly associated with obesity-related traits (BMI, lipids and height). Many of these genes are associated with relevant phenotypes in the Hybrid Mouse Diversity Panel. Our results showcase the power of integrating genotype, gene expression and phenotype to gain insights into the genetic basis of complex traits.

Citing Articles

From Clinic to Mechanisms: Multi-Omics Provide New Insights into Cerebrospinal Fluid Metabolites and the Spectrum of Psychiatric Disorders.

Wen J, Li Y, Chen Y, Li Y, Yu B, Liu H Mol Neurobiol. 2025; .

PMID: 40085352 DOI: 10.1007/s12035-025-04773-0.


Association between autoimmune disease and neurodevelopmental disorder: a Mendelian randomization analysis.

Qin J, Zhang Y, Hu R, Lin M, Yu R, Hua Y Ital J Pediatr. 2025; 51(1):76.

PMID: 40082977 PMC: 11905720. DOI: 10.1186/s13052-025-01910-2.


Unraveling the brain-joint axis: genetic, transcriptomic, and cohort insights from neuroticism to osteoarthritis.

Zhang J, Li Y, Li Y, Liu H Mamm Genome. 2025; .

PMID: 40080206 DOI: 10.1007/s00335-025-10112-4.


Identification and validation of transcriptome-wide association study-derived genes as potential druggable targets for osteoarthritis.

Zhou X, Ye X, Yao J, Lin X, Weng Y, Huang Y Bone Joint Res. 2025; 14(3):224-235.

PMID: 40079200 PMC: 11904851. DOI: 10.1302/2046-3758.143.BJR-2024-0251.R1.


Single-cell eQTL mapping in yeast reveals a tradeoff between growth and reproduction.

Boocock J, Alexander N, Alamo Tapia L, Walter-McNeill L, Patel S, Munugala C Elife. 2025; 13.

PMID: 40073070 PMC: 11903034. DOI: 10.7554/eLife.95566.


References
1.
Finucane H, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh P . Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet. 2015; 47(11):1228-35. PMC: 4626285. DOI: 10.1038/ng.3404. View

2.
Zhou X, Carbonetto P, Stephens M . Polygenic modeling with bayesian sparse linear mixed models. PLoS Genet. 2013; 9(2):e1003264. PMC: 3567190. DOI: 10.1371/journal.pgen.1003264. View

3.
Davey Smith G, Ebrahim S . 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease?. Int J Epidemiol. 2003; 32(1):1-22. DOI: 10.1093/ije/dyg070. View

4.
Raitakari O, Juonala M, Ronnemaa T, Keltikangas-Jarvinen L, Rasanen L, Pietikainen M . Cohort profile: the cardiovascular risk in Young Finns Study. Int J Epidemiol. 2008; 37(6):1220-6. DOI: 10.1093/ije/dym225. View

5.
Han B, Kang H, Eskin E . Rapid and accurate multiple testing correction and power estimation for millions of correlated markers. PLoS Genet. 2009; 5(4):e1000456. PMC: 2663787. DOI: 10.1371/journal.pgen.1000456. View