» Articles » PMID: 25693563

Integrative Analysis of 111 Reference Human Epigenomes

Overview
Journal Nature
Specialty Science
Date 2015 Feb 20
PMID 25693563
Citations 3351
Authors
Affiliations
Soon will be listed here.
Abstract

The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

Citing Articles

Mutational constraint analysis workflow for overlapping short open reading frames and genomic neighbors.

Danner M, Begemann M, Kraft F, Elbracht M, Kurth I, Krause J BMC Genomics. 2025; 26(1):254.

PMID: 40087590 DOI: 10.1186/s12864-025-11444-w.


A unified hypothesis-free feature extraction framework for diverse epigenomic data.

Balci A, Chikina M Bioinform Adv. 2025; 5(1):vbaf013.

PMID: 40078573 PMC: 11897706. DOI: 10.1093/bioadv/vbaf013.


Spatial 3D genome organization reveals intratumor heterogeneity in primary glioblastoma samples.

Wang Q, Wang J, Mathur R, Youngblood M, Jin Q, Hou Y Sci Adv. 2025; 11(11):eadn2830.

PMID: 40073147 PMC: 11900876. DOI: 10.1126/sciadv.adn2830.


Atlas of imprinted and allele-specific DNA methylation in the human body.

Rosenski J, Peretz A, Magenheim J, Loyfer N, Shemer R, Glaser B Nat Commun. 2025; 16(1):2141.

PMID: 40069157 PMC: 11897249. DOI: 10.1038/s41467-025-57433-1.


Epigenetic entropy, social disparity, and health and lifespan in the Women's Health Initiative.

Mozhui K, Starlard-Davenport A, Sun Y, Shadyab A, Casanova R, Thomas F medRxiv. 2025; .

PMID: 40061325 PMC: 11888519. DOI: 10.1101/2025.02.21.25322696.


References
1.
Mikkelsen T, Ku M, Jaffe D, Issac B, Lieberman E, Giannoukos G . Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007; 448(7153):553-60. PMC: 2921165. DOI: 10.1038/nature06008. View

2.
Berger M, Philippakis A, Qureshi A, He F, Estep 3rd P, Bulyk M . Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat Biotechnol. 2006; 24(11):1429-35. PMC: 4419707. DOI: 10.1038/nbt1246. View

3.
Sandelin A, Alkema W, Engstrom P, Wasserman W, Lenhard B . JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 2003; 32(Database issue):D91-4. PMC: 308747. DOI: 10.1093/nar/gkh012. View

4.
Neph S, Vierstra J, Stergachis A, Reynolds A, Haugen E, Vernot B . An expansive human regulatory lexicon encoded in transcription factor footprints. Nature. 2012; 489(7414):83-90. PMC: 3736582. DOI: 10.1038/nature11212. View

5.
Li H, Durbin R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25(14):1754-60. PMC: 2705234. DOI: 10.1093/bioinformatics/btp324. View