» Articles » PMID: 19305407

Global Mapping of Protein-DNA Interactions in Vivo by Digital Genomic Footprinting

Abstract

The orchestrated binding of transcriptional activators and repressors to specific DNA sequences in the context of chromatin defines the regulatory program of eukaryotic genomes. We developed a digital approach to assay regulatory protein occupancy on genomic DNA in vivo by dense mapping of individual DNase I cleavages from intact nuclei using massively parallel DNA sequencing. Analysis of >23 million cleavages across the Saccharomyces cerevisiae genome revealed thousands of protected regulatory protein footprints, enabling de novo derivation of factor binding motifs and the identification of hundreds of new binding sites for major regulators. We observed striking correspondence between single-nucleotide resolution DNase I cleavage patterns and protein-DNA interactions determined by crystallography. The data also yielded a detailed view of larger chromatin features including positioned nucleosomes flanking factor binding regions. Digital genomic footprinting should be a powerful approach to delineate the cis-regulatory framework of any organism with an available genome sequence.

Citing Articles

Telomemore enables single-cell analysis of cell cycle and chromatin condensation.

Yakovenko I, Mihai I, Selinger M, Rosenbaum W, Dernstedt A, Groning R Nucleic Acids Res. 2025; 53(3).

PMID: 39878215 PMC: 11775621. DOI: 10.1093/nar/gkaf031.


Efficient, scalable, and near-nucleotide-resolution profiling of protein occupancy in the genome with deaminases.

Chang L, Ren B Proc Natl Acad Sci U S A. 2025; 122(5):e2425203122.

PMID: 39869813 PMC: 11804588. DOI: 10.1073/pnas.2425203122.


ChromBPNet: bias factorized, base-resolution deep learning models of chromatin accessibility reveal cis-regulatory sequence syntax, transcription factor footprints and regulatory variants.

Pampari A, Shcherbina A, Kvon E, Kosicki M, Nair S, Kundu S bioRxiv. 2025; .

PMID: 39829783 PMC: 11741299. DOI: 10.1101/2024.12.25.630221.


missense-perturbation of regulatory element footprints disrupts serotonergic forebrain axon arborization.

Eastman B, Tabuchi N, Zhang X, Spencer W, Deneris E bioRxiv. 2024; .

PMID: 39713471 PMC: 11661190. DOI: 10.1101/2024.12.12.628165.


Genome-wide single-cell and single-molecule footprinting of transcription factors with deaminase.

He R, Dong W, Wang Z, Xie C, Gao L, Ma W Proc Natl Acad Sci U S A. 2024; 121(52):e2423270121.

PMID: 39689177 PMC: 11670102. DOI: 10.1073/pnas.2423270121.


References
1.
Borneman A, Gianoulis T, Zhang Z, Yu H, Rozowsky J, Seringhaus M . Divergence of transcription factor binding sites across related yeast species. Science. 2007; 317(5839):815-9. DOI: 10.1126/science.1140748. View

2.
Kellis M, Patterson N, Endrizzi M, Birren B, Lander E . Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature. 2003; 423(6937):241-54. DOI: 10.1038/nature01644. View

3.
Siepel A, Bejerano G, Pedersen J, Hinrichs A, Hou M, Rosenbloom K . Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005; 15(8):1034-50. PMC: 1182216. DOI: 10.1101/gr.3715005. View

4.
Wang K, Warner J . Positive and negative autoregulation of REB1 transcription in Saccharomyces cerevisiae. Mol Cell Biol. 1998; 18(7):4368-76. PMC: 109020. DOI: 10.1128/MCB.18.7.4368. View

5.
Jakobsen B, Pelham H . Constitutive binding of yeast heat shock factor to DNA in vivo. Mol Cell Biol. 1988; 8(11):5040-2. PMC: 365598. DOI: 10.1128/mcb.8.11.5040-5042.1988. View