» Articles » PMID: 19815776

Comprehensive Mapping of Long-range Interactions Reveals Folding Principles of the Human Genome

Abstract

We describe Hi-C, a method that probes the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. We constructed spatial proximity maps of the human genome with Hi-C at a resolution of 1 megabase. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free, polymer conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.

Citing Articles

Improved cohesin HiChIP protocol and bioinformatic analysis for robust detection of chromatin loops and stripes.

Buka K, Parteka-Tojek Z, Agarwal A, Denkiewicz M, Korsak S, Chilinski M Commun Biol. 2025; 8(1):437.

PMID: 40082674 PMC: 11906747. DOI: 10.1038/s42003-025-07847-w.


Tn5-Labeled DNA-FISH: An Optimized Probe Preparation Method for Probing Genome Architecture.

Yang Y, Chen G, Gao T, Ning D, Deng Y, Tian Z Int J Mol Sci. 2025; 26(5).

PMID: 40076846 PMC: 11901021. DOI: 10.3390/ijms26052224.


Spatial 3D genome organization reveals intratumor heterogeneity in primary glioblastoma samples.

Wang Q, Wang J, Mathur R, Youngblood M, Jin Q, Hou Y Sci Adv. 2025; 11(11):eadn2830.

PMID: 40073147 PMC: 11900876. DOI: 10.1126/sciadv.adn2830.


Integrative analysis of gene expression and chromatin dynamics multi-omics data in mouse models of bleomycin-induced lung fibrosis.

Li Z, Zhang M, Zhang Y, Gan Y, Zhu Z, Wang J Epigenetics Chromatin. 2025; 18(1):11.

PMID: 40069909 PMC: 11900494. DOI: 10.1186/s13072-025-00579-5.


Coarse-grained chromatin dynamics by tracking multiple similarly labeled gene loci.

Mader A, Rodriguez A, Yuan T, Surovtsev I, King M, Mochrie S bioRxiv. 2025; .

PMID: 40060506 PMC: 11888427. DOI: 10.1101/2025.02.27.640402.


References
1.
Hesselberth J, Chen X, Zhang Z, Sabo P, Sandstrom R, Reynolds A . Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat Methods. 2009; 6(4):283-9. PMC: 2668528. DOI: 10.1038/nmeth.1313. View

2.
Phillips J, Corces V . CTCF: master weaver of the genome. Cell. 2009; 137(7):1194-211. PMC: 3040116. DOI: 10.1016/j.cell.2009.06.001. View

3.
Kuo M, Allis C . In vivo cross-linking and immunoprecipitation for studying dynamic Protein:DNA associations in a chromatin environment. Methods. 1999; 19(3):425-33. DOI: 10.1006/meth.1999.0879. View

4.
Dekker J . Mapping in vivo chromatin interactions in yeast suggests an extended chromatin fiber with regional variation in compaction. J Biol Chem. 2008; 283(50):34532-40. PMC: 2596406. DOI: 10.1074/jbc.M806479200. View

5.
Naumann S, Reutzel D, Speicher M, Decker H . Complete karyotype characterization of the K562 cell line by combined application of G-banding, multiplex-fluorescence in situ hybridization, fluorescence in situ hybridization, and comparative genomic hybridization. Leuk Res. 2001; 25(4):313-22. DOI: 10.1016/s0145-2126(00)00125-9. View