» Articles » PMID: 29706548

The Energetics and Physiological Impact of Cohesin Extrusion

Abstract

Cohesin extrusion is thought to play a central role in establishing the architecture of mammalian genomes. However, extrusion has not been visualized in vivo, and thus, its functional impact and energetics are unknown. Using ultra-deep Hi-C, we show that loop domains form by a process that requires cohesin ATPases. Once formed, however, loops and compartments are maintained for hours without energy input. Strikingly, without ATP, we observe the emergence of hundreds of CTCF-independent loops that link regulatory DNA. We also identify architectural "stripes," where a loop anchor interacts with entire domains at high frequency. Stripes often tether super-enhancers to cognate promoters, and in B cells, they facilitate Igh transcription and recombination. Stripe anchors represent major hotspots for topoisomerase-mediated lesions, which promote chromosomal translocations and cancer. In plasmacytomas, stripes can deregulate Igh-translocated oncogenes. We propose that higher organisms have coopted cohesin extrusion to enhance transcription and recombination, with implications for tumor development.

Citing Articles

Liquid condensates: a new barrier to loop extrusion?.

Selivanovskiy A, Molodova M, Khrameeva E, Ulianov S, Razin S Cell Mol Life Sci. 2025; 82(1):80.

PMID: 39976773 PMC: 11842697. DOI: 10.1007/s00018-024-05559-8.


Epigenetic priming promotes acquisition of tyrosine kinase inhibitor resistance and oncogene amplification in human lung cancer.

Starble R, Sun E, Gbyli R, Radda J, Lu J, Jensen T bioRxiv. 2025; .

PMID: 39974875 PMC: 11838195. DOI: 10.1101/2025.01.26.634826.


Chromosomal domain formation by archaeal SMC, a roadblock protein, and DNA structure.

Yamaura K, Takemata N, Kariya M, Osaka A, Ishino S, Yamauchi M Nat Commun. 2025; 16(1):1312.

PMID: 39971902 PMC: 11840125. DOI: 10.1038/s41467-025-56197-y.


Convergent pairs of highly transcribed genes restrict chromatin looping in Dictyostelium discoideum.

Zhegalova I, Ulianov S, Galitsyna A, Pletenev I, Tsoy O, Luzhin A Nucleic Acids Res. 2025; 53(2).

PMID: 39844457 PMC: 11754127. DOI: 10.1093/nar/gkaf006.


SiCLAT: simultaneous imaging of chromatin loops and active transcription in living cells.

Wan X, Kong J, Hu X, Liu L, Yang Y, Li H Genome Biol. 2025; 26(1):1.

PMID: 39748374 PMC: 11694377. DOI: 10.1186/s13059-024-03463-9.


References
1.
Lengronne A, Katou Y, Mori S, Yokobayashi S, Kelly G, Itoh T . Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature. 2004; 430(6999):573-8. PMC: 2610358. DOI: 10.1038/nature02742. View

2.
Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny L . Formation of Chromosomal Domains by Loop Extrusion. Cell Rep. 2016; 15(9):2038-49. PMC: 4889513. DOI: 10.1016/j.celrep.2016.04.085. View

3.
van Berkum N, Dekker J . Determining spatial chromatin organization of large genomic regions using 5C technology. Methods Mol Biol. 2009; 567:189-213. PMC: 3880132. DOI: 10.1007/978-1-60327-414-2_13. View

4.
Rao S, Huntley M, Durand N, Stamenova E, Bochkov I, Robinson J . A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014; 159(7):1665-80. PMC: 5635824. DOI: 10.1016/j.cell.2014.11.021. View

5.
Kieffer-Kwon K, Nimura K, Rao S, Xu J, Jung S, Pekowska A . Myc Regulates Chromatin Decompaction and Nuclear Architecture during B Cell Activation. Mol Cell. 2017; 67(4):566-578.e10. PMC: 5854204. DOI: 10.1016/j.molcel.2017.07.013. View