» Articles » PMID: 38781369

Single-cell Genomics and Regulatory Networks for 388 Human Brains

Abstract

Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multiomics datasets into a resource comprising >2.8 million nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550,000 cell type-specific regulatory elements and >1.4 million single-cell expression quantitative trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.

Citing Articles

Single-Cell Transcriptional Profiling Reveals Cell Type-Specific Sex-Dependent Molecular Patterns of Schizophrenia.

Zhou R, Zhang T, Sun B Int J Mol Sci. 2025; 26(5).

PMID: 40076849 PMC: 11900070. DOI: 10.3390/ijms26052227.


Mapping the regulatory effects of common and rare non-coding variants across cellular and developmental contexts in the brain and heart.

Marderstein A, Kundu S, Padhi E, Deshpande S, Wang A, Robb E bioRxiv. 2025; .

PMID: 40027628 PMC: 11870466. DOI: 10.1101/2025.02.18.638922.


Topic modeling analysis of the Allen Human Brain Atlas.

Pizzini L, Valle F, Osella M, Caselle M Sci Rep. 2025; 15(1):6928.

PMID: 40011617 PMC: 11865453. DOI: 10.1038/s41598-025-91079-9.


Fast, flexible analysis of differences in cellular composition with crumblr.

Hoffman G, Roussos P bioRxiv. 2025; .

PMID: 39975411 PMC: 11838391. DOI: 10.1101/2025.01.29.635498.


Multi-omic Characterization of HIV Effects at Single Cell Level across Human Brain Regions.

Yang J, Agrawal K, Stanley 3rd J, Stanley J, Li R, Jacobs N bioRxiv. 2025; .

PMID: 39975288 PMC: 11839123. DOI: 10.1101/2025.02.05.636707.


References
1.
Newman A, Steen C, Liu C, Gentles A, Chaudhuri A, Scherer F . Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019; 37(7):773-782. PMC: 6610714. DOI: 10.1038/s41587-019-0114-2. View

2.
Anders S, Pyl P, Huber W . HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014; 31(2):166-9. PMC: 4287950. DOI: 10.1093/bioinformatics/btu638. View

3.
Lin L, Sibille E . Reduced brain somatostatin in mood disorders: a common pathophysiological substrate and drug target?. Front Pharmacol. 2013; 4:110. PMC: 3766825. DOI: 10.3389/fphar.2013.00110. View

4.
. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature. 2008; 455(7210):237-41. PMC: 3912847. DOI: 10.1038/nature07239. View

5.
Street K, Risso D, Fletcher R, Das D, Ngai J, Yosef N . Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics. 2018; 19(1):477. PMC: 6007078. DOI: 10.1186/s12864-018-4772-0. View