» Articles » PMID: 29914354

Slingshot: Cell Lineage and Pseudotime Inference for Single-cell Transcriptomics

Overview
Journal BMC Genomics
Publisher Biomed Central
Specialty Genetics
Date 2018 Jun 20
PMID 29914354
Citations 1111
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Single-cell transcriptomics allows researchers to investigate complex communities of heterogeneous cells. It can be applied to stem cells and their descendants in order to chart the progression from multipotent progenitors to fully differentiated cells. While a variety of statistical and computational methods have been proposed for inferring cell lineages, the problem of accurately characterizing multiple branching lineages remains difficult to solve.

Results: We introduce Slingshot, a novel method for inferring cell lineages and pseudotimes from single-cell gene expression data. In previously published datasets, Slingshot correctly identifies the biological signal for one to three branching trajectories. Additionally, our simulation study shows that Slingshot infers more accurate pseudotimes than other leading methods.

Conclusions: Slingshot is a uniquely robust and flexible tool which combines the highly stable techniques necessary for noisy single-cell data with the ability to identify multiple trajectories. Accurate lineage inference is a critical step in the identification of dynamic temporal gene expression.

Citing Articles

A single-nucleus and spatial transcriptomic atlas of the COVID-19 liver reveals topological, functional, and regenerative organ disruption in patients.

Pita-Juarez Y, Karagkouni D, Kalavros N, Melms J, Niezen S, Delorey T Genome Biol. 2025; 26(1):56.

PMID: 40087773 DOI: 10.1186/s13059-025-03499-5.


Single-cell transcriptomics reveals the cellular dynamics of hexafluoropropylene oxide dimer acid in exerting mouse male reproductive toxicity.

Zang X, Wang Y, Jiang L, Qiu Y, Ding Y, Gu S J Anim Sci Biotechnol. 2025; 16(1):42.

PMID: 40069855 PMC: 11895168. DOI: 10.1186/s40104-025-01177-x.


PTN activity in quiescent neural stem cells mediates Shank3 overexpression-induced manic behavior.

Kim H, Cho B, Kim H, Kang S, An S, Kwon D Nat Commun. 2025; 16(1):2435.

PMID: 40069581 PMC: 11897407. DOI: 10.1038/s41467-025-57699-5.


Unveiling two distinct osteolineage cell populations linked to age-related osteoporosis in adult mice through integrative single-cell analyses.

Zhou B, Huang H, Ding Z, Luo K, Chen Y, Han Y Cell Mol Life Sci. 2025; 82(1):106.

PMID: 40067455 PMC: 11896952. DOI: 10.1007/s00018-025-05597-w.


Alveolar macrophages from persons with HIV mount impaired TNF signaling networks to M. tuberculosis infection.

Kgoadi K, Bajpai P, Ibegbu C, Dkhar H, Enriquez A, Dawa S Nat Commun. 2025; 16(1):2397.

PMID: 40064940 PMC: 11894076. DOI: 10.1038/s41467-025-57668-y.


References
1.
Bendall S, Davis K, Amir E, Tadmor M, Simonds E, Chen T . Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell. 2014; 157(3):714-25. PMC: 4045247. DOI: 10.1016/j.cell.2014.04.005. View

2.
Risso D, Purvis L, Fletcher R, Das D, Ngai J, Dudoit S . clusterExperiment and RSEC: A Bioconductor package and framework for clustering of single-cell and other large gene expression datasets. PLoS Comput Biol. 2018; 14(9):e1006378. PMC: 6138422. DOI: 10.1371/journal.pcbi.1006378. View

3.
Cole M, Risso D, Wagner A, DeTomaso D, Ngai J, Purdom E . Performance Assessment and Selection of Normalization Procedures for Single-Cell RNA-Seq. Cell Syst. 2019; 8(4):315-328.e8. PMC: 6544759. DOI: 10.1016/j.cels.2019.03.010. View

4.
Kolodziejczyk A, Kim J, Svensson V, Marioni J, Teichmann S . The technology and biology of single-cell RNA sequencing. Mol Cell. 2015; 58(4):610-20. DOI: 10.1016/j.molcel.2015.04.005. View

5.
Bacher R, Kendziorski C . Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 2016; 17:63. PMC: 4823857. DOI: 10.1186/s13059-016-0927-y. View