» Articles » PMID: 37537502

Systematic Benchmarking of Single-cell ATAC-sequencing Protocols

Abstract

Single-cell assay for transposase-accessible chromatin by sequencing (scATAC-seq) has emerged as a powerful tool for dissecting regulatory landscapes and cellular heterogeneity. However, an exploration of systemic biases among scATAC-seq technologies has remained absent. In this study, we benchmark the performance of eight scATAC-seq methods across 47 experiments using human peripheral blood mononuclear cells (PBMCs) as a reference sample and develop PUMATAC, a universal preprocessing pipeline, to handle the various sequencing data formats. Our analyses reveal significant differences in sequencing library complexity and tagmentation specificity, which impact cell-type annotation, genotype demultiplexing, peak calling, differential region accessibility and transcription factor motif enrichment. Our findings underscore the importance of sample extraction, method selection, data processing and total cost of experiments, offering valuable guidance for future research. Finally, our data and analysis pipeline encompasses 169,000 PBMC scATAC-seq profiles and a best practices code repository for scATAC-seq data analysis, which are freely available to extend this benchmarking effort to future protocols.

Citing Articles

The landscape of cell lineage tracing.

Feng Y, Liu G, Li H, Cheng L Sci China Life Sci. 2025; .

PMID: 40035969 DOI: 10.1007/s11427-024-2751-6.


Telomemore enables single-cell analysis of cell cycle and chromatin condensation.

Yakovenko I, Mihai I, Selinger M, Rosenbaum W, Dernstedt A, Groning R Nucleic Acids Res. 2025; 53(3).

PMID: 39878215 PMC: 11775621. DOI: 10.1093/nar/gkaf031.


A comprehensive analysis framework for evaluating commercial single-cell RNA sequencing technologies.

De Simone M, Hoover J, Lau J, Bennett H, Wu B, Chen C Nucleic Acids Res. 2024; 53(2.

PMID: 39675380 PMC: 11754665. DOI: 10.1093/nar/gkae1186.


Nuclear lipids in chromatin regulation: Biological roles, experimental approaches and existing challenges.

Sayed A, Eswara K, Teles K, Boudellioua A, Fischle W Biol Cell. 2024; 117(1):e2400103.

PMID: 39648467 PMC: 11758486. DOI: 10.1111/boc.202400103.


GEEES: inferring cell-specific gene-enhancer interactions from multi-modal single-cell data.

Chen S, Keles S Bioinformatics. 2024; 40(11).

PMID: 39468737 PMC: 11549018. DOI: 10.1093/bioinformatics/btae638.


References
1.
Gonzalez-Blas C, Minnoye L, Papasokrati D, Aibar S, Hulselmans G, Christiaens V . cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data. Nat Methods. 2019; 16(5):397-400. PMC: 6517279. DOI: 10.1038/s41592-019-0367-1. View

2.
Gonzalez-Blas C, De Winter S, Hulselmans G, Hecker N, Matetovici I, Christiaens V . SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks. Nat Methods. 2023; 20(9):1355-1367. PMC: 10482700. DOI: 10.1038/s41592-023-01938-4. View

3.
Lareau C, Ludwig L, Muus C, Gohil S, Zhao T, Chiang Z . Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling. Nat Biotechnol. 2020; 39(4):451-461. PMC: 7878580. DOI: 10.1038/s41587-020-0645-6. View

4.
Imrichova H, Hulselmans G, Atak Z, Potier D, Aerts S . i-cisTarget 2015 update: generalized cis-regulatory enrichment analysis in human, mouse and fly. Nucleic Acids Res. 2015; 43(W1):W57-64. PMC: 4489282. DOI: 10.1093/nar/gkv395. View

5.
Wolf F, Angerer P, Theis F . SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018; 19(1):15. PMC: 5802054. DOI: 10.1186/s13059-017-1382-0. View