» Articles » PMID: 31178118

Comprehensive Integration of Single-Cell Data

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2019 Jun 11
PMID 31178118
Citations 6700
Authors
Affiliations
Soon will be listed here.
Abstract

Single-cell transcriptomics has transformed our ability to characterize cell states, but deep biological understanding requires more than a taxonomic listing of clusters. As new methods arise to measure distinct cellular modalities, a key analytical challenge is to integrate these datasets to better understand cellular identity and function. Here, we develop a strategy to "anchor" diverse datasets together, enabling us to integrate single-cell measurements not only across scRNA-seq technologies, but also across different modalities. After demonstrating improvement over existing methods for integrating scRNA-seq data, we anchor scRNA-seq experiments with scATAC-seq to explore chromatin differences in closely related interneuron subsets and project protein expression measurements onto a bone marrow atlas to characterize lymphocyte populations. Lastly, we harmonize in situ gene expression and scRNA-seq datasets, allowing transcriptome-wide imputation of spatial gene expression patterns. Our work presents a strategy for the assembly of harmonized references and transfer of information across datasets.

Citing Articles

Single-cell and chromatin accessibility profiling reveals regulatory programs of pathogenic Th2 cells in allergic asthma.

Khan M, Alteneder M, Reiter W, Krausgruber T, Dobnikar L, Madern M Nat Commun. 2025; 16(1):2565.

PMID: 40089475 DOI: 10.1038/s41467-025-57590-3.


A single-nucleus and spatial transcriptomic atlas of the COVID-19 liver reveals topological, functional, and regenerative organ disruption in patients.

Pita-Juarez Y, Karagkouni D, Kalavros N, Melms J, Niezen S, Delorey T Genome Biol. 2025; 26(1):56.

PMID: 40087773 DOI: 10.1186/s13059-025-03499-5.


Proteogenomic characterization of molecular and cellular targets for treatment-resistant subtypes in locally advanced cervical cancers.

Hyeon D, Nam D, Shin H, Jeong J, Jung E, Cho S Mol Cancer. 2025; 24(1):77.

PMID: 40087745 DOI: 10.1186/s12943-025-02256-3.


Macrophage-derived SPP1 exacerbate myocardial injury by interacting with fibroblasts in viral myocarditis.

Duan X, Zhang L, Liu K, Guo K, You Y, Jia H Biol Direct. 2025; 20(1):30.

PMID: 40087693 DOI: 10.1186/s13062-025-00621-2.


Feature selection methods affect the performance of scRNA-seq data integration and querying.

Zappia L, Richter S, Ramirez-Suastegui C, Kfuri-Rubens R, Vornholz L, Wang W Nat Methods. 2025; .

PMID: 40082610 DOI: 10.1038/s41592-025-02624-3.


References
1.
Pliner H, Packer J, McFaline-Figueroa J, Cusanovich D, Daza R, Aghamirzaie D . Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. Mol Cell. 2018; 71(5):858-871.e8. PMC: 6582963. DOI: 10.1016/j.molcel.2018.06.044. View

2.
Karaiskos N, Wahle P, Alles J, Boltengagen A, Ayoub S, Kipar C . The embryo at single-cell transcriptome resolution. Science. 2017; 358(6360):194-199. DOI: 10.1126/science.aan3235. View

3.
Love M, Huber W, Anders S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550. PMC: 4302049. DOI: 10.1186/s13059-014-0550-8. View

4.
Kiselev V, Yiu A, Hemberg M . scmap: projection of single-cell RNA-seq data across data sets. Nat Methods. 2018; 15(5):359-362. DOI: 10.1038/nmeth.4644. View

5.
Sato T, Panda S, Miraglia L, Reyes T, Rudic R, McNamara P . A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron. 2004; 43(4):527-37. DOI: 10.1016/j.neuron.2004.07.018. View