» Articles » PMID: 35867757

Genetic and Structural Basis of the Human Anti-α-galactosyl Antibody Response

Abstract

Humans lack the capacity to produce the Galα1-3Galβ1-4GlcNAc (α-gal) glycan, and produce anti-α-gal antibodies upon exposure to the carbohydrate on a diverse set of immunogens, including commensal gut bacteria, malaria parasites, cetuximab, and tick proteins. Here we use X-ray crystallographic analysis of antibodies from α-gal knockout mice and humans in complex with the glycan to reveal a common binding motif, centered on a germline-encoded tryptophan residue at Kabat position 33 (W33) of the complementarity-determining region of the variable heavy chain (CDRH1). Immunoglobulin sequencing of anti-α-gal B cells in healthy humans and tick-induced mammalian meat anaphylaxis patients revealed preferential use of heavy chain germline IGHV3-7, encoding W33, among an otherwise highly polyclonal antibody response. Antigen binding was critically dependent on the presence of the germline-encoded W33 residue for all of the analyzed antibodies; moreover, introduction of the W33 motif into naive IGHV3-23 antibody phage libraries enabled the rapid selection of α-gal binders. Our results outline structural and genetic factors that shape the human anti-α-galactosyl antibody response, and provide a framework for future therapeutics development.

Citing Articles

The α-Gal epitope - the cause of a global allergic disease.

Perusko M, Grundstrom J, Eldh M, Hamsten C, Apostolovic D, van Hage M Front Immunol. 2024; 15:1335911.

PMID: 38318181 PMC: 10838981. DOI: 10.3389/fimmu.2024.1335911.


Big is not better: Comparing two alpha-Gal-bearing glycotopes in neoglycoproteins as biomarkers for Leishmania (Viannia) braziliensis infection.

Montoya A, Gil E, Vinales I, Estevao I, Taboada P, Torrico M Carbohydr Res. 2024; 536:109015.

PMID: 38198982 PMC: 11366264. DOI: 10.1016/j.carres.2023.109015.


Antibody production and tolerance to the α-gal epitope as models for understanding and preventing the immune response to incompatible ABO carbohydrate antigens and for α-gal therapies.

Galili U Front Mol Biosci. 2023; 10:1209974.

PMID: 37449060 PMC: 10338101. DOI: 10.3389/fmolb.2023.1209974.


Genetic and structural basis of the human anti-α-galactosyl antibody response.

Langley D, Schofield P, Nevoltris D, Jackson J, Jackson K, Peters T Proc Natl Acad Sci U S A. 2022; 119(28):e2123212119.

PMID: 35867757 PMC: 9282431. DOI: 10.1073/pnas.2123212119.

References
1.
Rouet R, Dudgeon K, Christ D . Generation of human single domain antibody repertoires by Kunkel mutagenesis. Methods Mol Biol. 2012; 907:195-209. DOI: 10.1007/978-1-61779-974-7_10. View

2.
Dudgeon K, Rouet R, Kokmeijer I, Schofield P, Stolp J, Langley D . General strategy for the generation of human antibody variable domains with increased aggregation resistance. Proc Natl Acad Sci U S A. 2012; 109(27):10879-84. PMC: 3390889. DOI: 10.1073/pnas.1202866109. View

3.
Galili U . Significance of the evolutionary α1,3-galactosyltransferase (GGTA1) gene inactivation in preventing extinction of apes and old world monkeys. J Mol Evol. 2014; 80(1):1-9. DOI: 10.1007/s00239-014-9652-x. View

4.
Higgins M, Ficko-Blean E, Meloncelli P, Lowary T, Boraston A . The overall architecture and receptor binding of pneumococcal carbohydrate-antigen-hydrolyzing enzymes. J Mol Biol. 2011; 411(5):1017-36. DOI: 10.1016/j.jmb.2011.06.035. View

5.
Le Nours J, De Maria L, Welner D, Jorgensen C, Christensen L, Borchert T . Investigating the binding of beta-1,4-galactan to Bacillus licheniformis beta-1,4-galactanase by crystallography and computational modeling. Proteins. 2008; 75(4):977-89. DOI: 10.1002/prot.22310. View