» Articles » PMID: 39121846

Guidelines for Minimal Information on Cellular Senescence Experimentation In vivo

Abstract

Cellular senescence is a cell fate triggered in response to stress and is characterized by stable cell-cycle arrest and a hypersecretory state. It has diverse biological roles, ranging from tissue repair to chronic disease. The development of new tools to study senescence in vivo has paved the way for uncovering its physiological and pathological roles and testing senescent cells as a therapeutic target. However, the lack of specific and broadly applicable markers makes it difficult to identify and characterize senescent cells in tissues and living organisms. To address this, we provide practical guidelines called "minimum information for cellular senescence experimentation in vivo" (MICSE). It presents an overview of senescence markers in rodent tissues, transgenic models, non-mammalian systems, human tissues, and tumors and their use in the identification and specification of senescent cells. These guidelines provide a uniform, state-of-the-art, and accessible toolset to improve our understanding of cellular senescence in vivo.

Citing Articles

Isolation and Characterization of Endothelial-Colony Forming Cells (ECFC): Studying Endothelial Senescence for Translational Studies and for Personalized Medicine.

Paschalaki K, Pericleous C Methods Mol Biol. 2025; 2906:255-270.

PMID: 40082361 DOI: 10.1007/978-1-0716-4426-3_15.


The DNA Damage Response as an Auxiliary Indicator of Senescence in Cancer: A User-Friendly Toolkit of Markers and Detection Methods.

Logotheti S, Vasilopoulos S, Tremi I, Gkikoudi A, Fragkos M, Pavlopoulou A Methods Mol Biol. 2025; 2906:83-112.

PMID: 40082352 DOI: 10.1007/978-1-0716-4426-3_6.


Spatio-Temporal Characterization of Cellular Senescence Hallmarks in Experimental Ischemic Stroke.

Baixauli-Martin J, Burguete M, Lopez-Morales M, Castello-Ruiz M, Aliena-Valero A, Jover-Mengual T Int J Mol Sci. 2025; 26(5).

PMID: 40076983 PMC: 11900039. DOI: 10.3390/ijms26052364.


Senescent-like microglia limit remyelination through the senescence associated secretory phenotype.

Gross P, Duran-Laforet V, Ho L, Melchor G, Zia S, Manavi Z Nat Commun. 2025; 16(1):2283.

PMID: 40055369 PMC: 11889183. DOI: 10.1038/s41467-025-57632-w.


p53 enhances DNA repair and suppresses cytoplasmic chromatin fragments and inflammation in senescent cells.

Miller K, Li B, Pierce-Hoffman H, Patel S, Lei X, Rajesh A Nat Commun. 2025; 16(1):2229.

PMID: 40044657 PMC: 11882782. DOI: 10.1038/s41467-025-57229-3.


References
1.
Castelo-Branco C, Pons F, Gratacos E, Fortuny A, Vanrell J, Gonzalez-Merlo J . Relationship between skin collagen and bone changes during aging. Maturitas. 1994; 18(3):199-206. DOI: 10.1016/0378-5122(94)90126-0. View

2.
Childs B, Baker D, Wijshake T, Conover C, Campisi J, van Deursen J . Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science. 2016; 354(6311):472-477. PMC: 5112585. DOI: 10.1126/science.aaf6659. View

3.
Jurk D, Wang C, Miwa S, Maddick M, Korolchuk V, Tsolou A . Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell. 2012; 11(6):996-1004. PMC: 3533793. DOI: 10.1111/j.1474-9726.2012.00870.x. View

4.
Farr J, Fraser D, Wang H, Jaehn K, Ogrodnik M, Weivoda M . Identification of Senescent Cells in the Bone Microenvironment. J Bone Miner Res. 2016; 31(11):1920-1929. PMC: 5289710. DOI: 10.1002/jbmr.2892. View

5.
Kultima K, Skold K, Boren M . Biomarkers of disease and post-mortem changes - Heat stabilization, a necessary tool for measurement of protein regulation. J Proteomics. 2011; 75(1):145-59. DOI: 10.1016/j.jprot.2011.06.009. View