» Articles » PMID: 36702996

Multi-ancestry Transcriptome-wide Association Analyses Yield Insights into Tobacco Use Biology and Drug Repurposing

Overview
Journal Nat Genet
Specialty Genetics
Date 2023 Jan 26
PMID 36702996
Authors
Affiliations
Soon will be listed here.
Abstract

Most transcriptome-wide association studies (TWASs) so far focus on European ancestry and lack diversity. To overcome this limitation, we aggregated genome-wide association study (GWAS) summary statistics, whole-genome sequences and expression quantitative trait locus (eQTL) data from diverse ancestries. We developed a new approach, TESLA (multi-ancestry integrative study using an optimal linear combination of association statistics), to integrate an eQTL dataset with a multi-ancestry GWAS. By exploiting shared phenotypic effects between ancestries and accommodating potential effect heterogeneities, TESLA improves power over other TWAS methods. When applied to tobacco use phenotypes, TESLA identified 273 new genes, up to 55% more compared with alternative TWAS methods. These hits and subsequent fine mapping using TESLA point to target genes with biological relevance. In silico drug-repurposing analyses highlight several drugs with known efficacy, including dextromethorphan and galantamine, and new drugs such as muscle relaxants that may be repurposed for treating nicotine addiction.

Citing Articles

Transferability of Single- and Cross-Tissue Transcriptome Imputation Models Across Ancestry Groups.

Pagnuco I, Eyre S, Rattray M, Morris A Genet Epidemiol. 2025; 49(1):e22611.

PMID: 39812501 PMC: 11734644. DOI: 10.1002/gepi.22611.


TIPS: a novel pathway-guided joint model for transcriptome-wide association studies.

Wang N, Ye Z, Ma T Brief Bioinform. 2024; 25(6).

PMID: 39550224 PMC: 11568880. DOI: 10.1093/bib/bbae587.


MGACL: Prediction Drug-Protein Interaction Based on Meta-Graph Association-Aware Contrastive Learning.

Zhang P, Lin P, Li D, Wang W, Qi X, Li J Biomolecules. 2024; 14(10).

PMID: 39456200 PMC: 11505808. DOI: 10.3390/biom14101267.


Powerful mapping of -genetic effects on gene expression across diverse populations reveals novel disease-critical genes.

Akamatsu K, Golzari S, Amariuta T medRxiv. 2024; .

PMID: 39399015 PMC: 11469471. DOI: 10.1101/2024.09.25.24314410.


TWAS facilitates gene-scale trait genetic dissection through gene expression, structural variations, and alternative splicing in soybean.

Li D, Wang Q, Tian Y, Lyv X, Zhang H, Hong H Plant Commun. 2024; 5(10):101010.

PMID: 38918950 PMC: 11573905. DOI: 10.1016/j.xplc.2024.101010.


References
1.
Liu M, Jiang Y, Wedow R, Li Y, Brazel D, Chen F . Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet. 2019; 51(2):237-244. PMC: 6358542. DOI: 10.1038/s41588-018-0307-5. View

2.
Taliun D, Harris D, Kessler M, Carlson J, Szpiech Z, Torres R . Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature. 2021; 590(7845):290-299. PMC: 7875770. DOI: 10.1038/s41586-021-03205-y. View

3.
Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx B . Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016; 48(3):245-52. PMC: 4767558. DOI: 10.1038/ng.3506. View

4.
Nagpal S, Meng X, Epstein M, Tsoi L, Patrick M, Gibson G . TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation Enhances Gene Mapping of Complex Traits. Am J Hum Genet. 2019; 105(2):258-266. PMC: 6698804. DOI: 10.1016/j.ajhg.2019.05.018. View

5.
Gamazon E, Wheeler H, Shah K, Mozaffari S, Aquino-Michaels K, Carroll R . A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015; 47(9):1091-8. PMC: 4552594. DOI: 10.1038/ng.3367. View