» Articles » PMID: 38632388

Multi-ancestry Meta-analysis of Tobacco Use Disorder Identifies 461 Potential Risk Genes and Reveals Associations with Multiple Health Outcomes

Abstract

Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic factors influence smoking behaviours and although strides have been made using genome-wide association studies to identify risk variants, most variants identified have been for nicotine consumption, rather than TUD. Here we leveraged four US biobanks to perform a multi-ancestral meta-analysis of TUD (derived via electronic health records) in 653,790 individuals (495,005 European, 114,420 African American and 44,365 Latin American) and data from UK Biobank (n = 898,680). We identified 88 independent risk loci; integration with functional genomic tools uncovered 461 potential risk genes, primarily expressed in the brain. TUD was genetically correlated with smoking and psychiatric traits from traditionally ascertained cohorts, externalizing behaviours in children and hundreds of medical outcomes, including HIV infection, heart disease and pain. This work furthers our biological understanding of TUD and establishes electronic health records as a source of phenotypic information for studying the genetics of TUD.

Citing Articles

Multi-ancestral genome-wide association study of clinically defined nicotine dependence reveals strong genetic correlations with other substance use disorders and health-related traits.

Johnson E, Lai D, Miller A, Hatoum A, Deak J, Balbona J medRxiv. 2025; .

PMID: 39974067 PMC: 11838619. DOI: 10.1101/2025.01.29.25320962.


Considerations for the application of polygenic scores to clinical care of individuals with substance use disorders.

Kember R, Davis C, Feuer K, Kranzler H J Clin Invest. 2024; 134(20).

PMID: 39403926 PMC: 11473164. DOI: 10.1172/JCI172882.


The Relationship between Smoking and Susceptibility to HIV Infection: A Two-Sample Mendelian Randomization Analysis.

Yu M, Hu W, Yan S, Qu M, Jiao Y, Wang F Biomedicines. 2024; 12(9).

PMID: 39335573 PMC: 11428241. DOI: 10.3390/biomedicines12092060.


A single-nucleus transcriptomic atlas of medium spiny neurons in the rat nucleus accumbens.

Reiner B, Chehimi S, Merkel R, Toikumo S, Berrettini W, Kranzler H Sci Rep. 2024; 14(1):18258.

PMID: 39107568 PMC: 11303397. DOI: 10.1038/s41598-024-69255-0.


Shared and unique 3D genomic features of substance use disorders across multiple cell types.

Trang K, Chesi A, Toikumo S, Pippin J, Pahl M, OBrien J medRxiv. 2024; .

PMID: 39072016 PMC: 11275669. DOI: 10.1101/2024.07.18.24310649.


References
1.
Gu Z, Gu L, Eils R, Schlesner M, Brors B . circlize Implements and enhances circular visualization in R. Bioinformatics. 2014; 30(19):2811-2. DOI: 10.1093/bioinformatics/btu393. View

2.
Fehrmann R, Karjalainen J, Krajewska M, Westra H, Maloney D, Simeonov A . Gene expression analysis identifies global gene dosage sensitivity in cancer. Nat Genet. 2015; 47(2):115-25. DOI: 10.1038/ng.3173. View

3.
Ge T, Chen C, Ni Y, Feng Y, Smoller J . Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat Commun. 2019; 10(1):1776. PMC: 6467998. DOI: 10.1038/s41467-019-09718-5. View

4.
Xu K, Li B, McGinnis K, Vickers-Smith R, Dao C, Sun N . Genome-wide association study of smoking trajectory and meta-analysis of smoking status in 842,000 individuals. Nat Commun. 2020; 11(1):5302. PMC: 7598939. DOI: 10.1038/s41467-020-18489-3. View

5.
Sanchez-Roige S, Palmer A . Emerging phenotyping strategies will advance our understanding of psychiatric genetics. Nat Neurosci. 2020; 23(4):475-480. PMC: 9200410. DOI: 10.1038/s41593-020-0609-7. View