» Articles » PMID: 34984977

Functional Profiling of Long Intergenic Non-coding RNAs in Fission Yeast

Abstract

Eukaryotic genomes express numerous long intergenic non-coding RNAs (lincRNAs) that do not overlap any coding genes. Some lincRNAs function in various aspects of gene regulation, but it is not clear in general to what extent lincRNAs contribute to the information flow from genotype to phenotype. To explore this question, we systematically analysed cellular roles of lincRNAs in . Using seamless CRISPR/Cas9-based genome editing, we deleted 141 lincRNA genes to broadly phenotype these mutants, together with 238 diverse coding-gene mutants for functional context. We applied high-throughput colony-based assays to determine mutant growth and viability in benign conditions and in response to 145 different nutrient, drug, and stress conditions. These analyses uncovered phenotypes for 47.5% of the lincRNAs and 96% of the protein-coding genes. For 110 lincRNA mutants, we also performed high-throughput microscopy and flow cytometry assays, linking 37% of these lincRNAs with cell-size and/or cell-cycle control. With all assays combined, we detected phenotypes for 84 (59.6%) of all lincRNA deletion mutants tested. For complementary functional inference, we analysed colony growth of strains ectopically overexpressing 113 lincRNA genes under 47 different conditions. Of these overexpression strains, 102 (90.3%) showed altered growth under certain conditions. Clustering analyses provided further functional clues and relationships for some of the lincRNAs. These rich phenomics datasets associate lincRNA mutants with hundreds of phenotypes, indicating that most of the lincRNAs analysed exert cellular functions in specific environmental or physiological contexts. This study provides groundwork to further dissect the roles of these lincRNAs in the relevant conditions.

Citing Articles

Ageing-associated long non-coding RNA extends lifespan and reduces translation in non-dividing cells.

Anver S, Sumit A, Sun X, Hatimy A, Thalassinos K, Marguerat S EMBO Rep. 2024; 25(11):4921-4949.

PMID: 39358553 PMC: 11549352. DOI: 10.1038/s44319-024-00265-9.


Uridylation regulates mRNA decay directionality in fission yeast.

Grochowski M, Lipinska-Zubrycka L, Townsend S, Golisz-Mocydlarz A, Zakrzewska-Placzek M, Brzyzek G Nat Commun. 2024; 15(1):8359.

PMID: 39333464 PMC: 11436920. DOI: 10.1038/s41467-024-50824-w.


Non-Coding RNAs: Regulators of Stress, Ageing, and Developmental Decisions in Yeast?.

cap M, Palkova Z Cells. 2024; 13(7.

PMID: 38607038 PMC: 11012152. DOI: 10.3390/cells13070599.


Identification of plb1 mutation that extends longevity via activating Sty1 MAPK in Schizosaccharomyces pombe.

Maekawa Y, Matsui K, Okamoto K, Shimasaki T, Ohtsuka H, Tani M Mol Genet Genomics. 2024; 299(1):20.

PMID: 38424265 DOI: 10.1007/s00438-024-02107-8.


Broad functional profiling of fission yeast proteins using phenomics and machine learning.

Rodriguez-Lopez M, Bordin N, Lees J, Scholes H, Hassan S, Saintain Q Elife. 2023; 12.

PMID: 37787768 PMC: 10547477. DOI: 10.7554/eLife.88229.


References
1.
Vachon L, Wood J, Kwon E, Laderoute A, Chatfield-Reed K, Karagiannis J . Functional characterization of fission yeast transcription factors by overexpression analysis. Genetics. 2013; 194(4):873-84. PMC: 3730917. DOI: 10.1534/genetics.113.150870. View

2.
Andric V, Nevers A, Hazra D, Auxilien S, Menant A, Graille M . A scaffold lncRNA shapes the mitosis to meiosis switch. Nat Commun. 2021; 12(1):770. PMC: 7859202. DOI: 10.1038/s41467-021-21032-7. View

3.
Huber F, Bunina D, Gupta I, Khmelinskii A, Meurer M, Theer P . Protein Abundance Control by Non-coding Antisense Transcription. Cell Rep. 2016; 15(12):2625-36. PMC: 4920891. DOI: 10.1016/j.celrep.2016.05.043. View

4.
Hauser R, Henshall D, Lubin F . The Epigenetics of Epilepsy and Its Progression. Neuroscientist. 2017; 24(2):186-200. DOI: 10.1177/1073858417705840. View

5.
Van Treeck B, Protter D, Matheny T, Khong A, Link C, Parker R . RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc Natl Acad Sci U S A. 2018; 115(11):2734-2739. PMC: 5856561. DOI: 10.1073/pnas.1800038115. View