» Articles » PMID: 31658850

CRISPR: A Screener's Guide

Overview
Journal SLAS Discov
Publisher Sage Publications
Specialty Molecular Biology
Date 2019 Oct 30
PMID 31658850
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The discovery of CRISPR-Cas9 systems has fueled a rapid expansion of gene editing adoption and has impacted pharmaceutical and biotechnology research substantially. Here, gene editing is used at an industrial scale to identify and validate new biological targets for precision medicines, with functional genomic screening having an increasingly important role. Functional genomic strategies provide a crucial link between observed biological phenomena and the genes that influence and drive those phenomena. Although such studies are not new, the use of CRISPR-Cas9 systems in this arena is providing more robust datasets for target identification and validation. CRISPR-based screening approaches are also useful later in the drug development pipeline for understanding drug resistance and sensitivity ahead of entering clinical trials. This review examines the developing landscape for CRISPR screening technologies within the pharmaceutical industry and explores the next steps for this constantly evolving screening platform.

Citing Articles

CRISPR-Cas Systems in the Fight Against Antimicrobial Resistance: Current Status, Potentials, and Future Directions.

Ahmed M, Kayode H, Okesanya O, Ukoaka B, Eshun G, Mourid M Infect Drug Resist. 2024; 17:5229-5245.

PMID: 39619730 PMC: 11608035. DOI: 10.2147/IDR.S494327.


Exploring retinal degenerative diseases through CRISPR-based screening.

Li R, Yang F, Chu B, Kong D, Hu J, Qian H Mol Biol Rep. 2024; 51(1):1029.

PMID: 39349793 DOI: 10.1007/s11033-024-09969-6.


Phenotypic drug discovery: recent successes, lessons learned and new directions.

Vincent F, Nueda A, Lee J, Schenone M, Prunotto M, Mercola M Nat Rev Drug Discov. 2022; 21(12):899-914.

PMID: 35637317 PMC: 9708951. DOI: 10.1038/s41573-022-00472-w.


Understudied proteins: opportunities and challenges for functional proteomics.

Kustatscher G, Collins T, Gingras A, Guo T, Hermjakob H, Ideker T Nat Methods. 2022; 19(7):774-779.

PMID: 35534633 DOI: 10.1038/s41592-022-01454-x.


CRISPR based therapeutics: a new paradigm in cancer precision medicine.

Das S, Bano S, Kapse P, Kundu G Mol Cancer. 2022; 21(1):85.

PMID: 35337340 PMC: 8953071. DOI: 10.1186/s12943-022-01552-6.


References
1.
Tan J, Martin S . Validation of Synthetic CRISPR Reagents as a Tool for Arrayed Functional Genomic Screening. PLoS One. 2016; 11(12):e0168968. PMC: 5193459. DOI: 10.1371/journal.pone.0168968. View

2.
Chavez A, Scheiman J, Vora S, Pruitt B, Tuttle M, Iyer E . Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 2015; 12(4):326-8. PMC: 4393883. DOI: 10.1038/nmeth.3312. View

3.
Larson M, Gilbert L, Wang X, Lim W, Weissman J, Qi L . CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc. 2013; 8(11):2180-96. PMC: 3922765. DOI: 10.1038/nprot.2013.132. View

4.
Tzelepis K, Koike-Yusa H, De Braekeleer E, Li Y, Metzakopian E, Dovey O . A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia. Cell Rep. 2016; 17(4):1193-1205. PMC: 5081405. DOI: 10.1016/j.celrep.2016.09.079. View

5.
Aguirre A, Meyers R, Weir B, Vazquez F, Zhang C, Ben-David U . Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting. Cancer Discov. 2016; 6(8):914-29. PMC: 4972686. DOI: 10.1158/2159-8290.CD-16-0154. View