» Articles » PMID: 29363560

Large-scale Image-based Profiling of Single-cell Phenotypes in Arrayed CRISPR-Cas9 Gene Perturbation Screens

Overview
Journal Mol Syst Biol
Specialty Molecular Biology
Date 2018 Jan 25
PMID 29363560
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

High-content imaging using automated microscopy and computer vision allows multivariate profiling of single-cell phenotypes. Here, we present methods for the application of the CISPR-Cas9 system in large-scale, image-based, gene perturbation experiments. We show that CRISPR-Cas9-mediated gene perturbation can be achieved in human tissue culture cells in a timeframe that is compatible with image-based phenotyping. We developed a pipeline to construct a large-scale arrayed library of 2,281 sequence-verified CRISPR-Cas9 targeting plasmids and profiled this library for genes affecting cellular morphology and the subcellular localization of components of the nuclear pore complex (NPC). We conceived a machine-learning method that harnesses genetic heterogeneity to score gene perturbations and identify phenotypically perturbed cells for in-depth characterization of gene perturbation effects. This approach enables genome-scale image-based multivariate gene perturbation profiling using CRISPR-Cas9.

Citing Articles

Arrayed CRISPR libraries for the genome-wide activation, deletion and silencing of human protein-coding genes.

Yin J, Frick L, Scheidmann M, Liu T, Trevisan C, Dhingra A Nat Biomed Eng. 2024; 9(1):127-148.

PMID: 39633028 PMC: 11754104. DOI: 10.1038/s41551-024-01278-4.


A statistical simulation model to guide the choices of analytical methods in arrayed CRISPR screen experiments.

Kim C, Cairns J, Quarantotti V, Kaczkowski B, Wang Y, Konings P PLoS One. 2024; 19(8):e0307445.

PMID: 39163294 PMC: 11335118. DOI: 10.1371/journal.pone.0307445.


Protein research in millets: current status and way forward.

Ceasar S, Prabhu S, Ebeed H Planta. 2024; 260(2):43.

PMID: 38958760 DOI: 10.1007/s00425-024-04478-z.


Genome-scale requirements for dynein-based transport revealed by a high-content arrayed CRISPR screen.

Wong C, Wingett S, Qian C, Hunter M, Taliaferro J, Ross-Thriepland D J Cell Biol. 2024; 223(5).

PMID: 38448164 PMC: 10916854. DOI: 10.1083/jcb.202306048.


Adding a Chemical Biology Twist to CRISPR Screening.

Huang S, Baskin J Isr J Chem. 2023; 63(1-2).

PMID: 37588264 PMC: 10427134. DOI: 10.1002/ijch.202200056.


References
1.
Friedman J, Hastie T, Tibshirani R . Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Softw. 2010; 33(1):1-22. PMC: 2929880. View

2.
Datlinger P, Rendeiro A, Schmidl C, Krausgruber T, Traxler P, Klughammer J . Pooled CRISPR screening with single-cell transcriptome readout. Nat Methods. 2017; 14(3):297-301. PMC: 5334791. DOI: 10.1038/nmeth.4177. View

3.
de Groot R, Luthi J, Lindsay H, Holtackers R, Pelkmans L . Large-scale image-based profiling of single-cell phenotypes in arrayed CRISPR-Cas9 gene perturbation screens. Mol Syst Biol. 2018; 14(1):e8064. PMC: 5787707. DOI: 10.15252/msb.20178064. View

4.
Dixit A, Parnas O, Li B, Chen J, Fulco C, Jerby-Arnon L . Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens. Cell. 2016; 167(7):1853-1866.e17. PMC: 5181115. DOI: 10.1016/j.cell.2016.11.038. View

5.
Collinet C, Stoter M, Bradshaw C, Samusik N, Rink J, Kenski D . Systems survey of endocytosis by multiparametric image analysis. Nature. 2010; 464(7286):243-9. DOI: 10.1038/nature08779. View