» Articles » PMID: 24136345

CRISPR Interference (CRISPRi) for Sequence-specific Control of Gene Expression

Overview
Journal Nat Protoc
Specialties Biology
Pathology
Science
Date 2013 Oct 19
PMID 24136345
Citations 533
Authors
Affiliations
Soon will be listed here.
Abstract

Sequence-specific control of gene expression on a genome-wide scale is an important approach for understanding gene functions and for engineering genetic regulatory systems. We have recently described an RNA-based method, CRISPR interference (CRISPRi), for targeted silencing of transcription in bacteria and human cells. The CRISPRi system is derived from the Streptococcus pyogenes CRISPR (clustered regularly interspaced palindromic repeats) pathway, requiring only the coexpression of a catalytically inactive Cas9 protein and a customizable single guide RNA (sgRNA). The Cas9-sgRNA complex binds to DNA elements complementary to the sgRNA and causes a steric block that halts transcript elongation by RNA polymerase, resulting in the repression of the target gene. Here we provide a protocol for the design, construction and expression of customized sgRNAs for transcriptional repression of any gene of interest. We also provide details for testing the repression activity of CRISPRi using quantitative fluorescence assays and native elongating transcript sequencing. CRISPRi provides a simplified approach for rapid gene repression within 1-2 weeks. The method can also be adapted for high-throughput interrogation of genome-wide gene functions and genetic interactions, thus providing a complementary approach to RNA interference, which can be used in a wider variety of organisms.

Citing Articles

A large-scale benchmark for network inference from single-cell perturbation data.

Chevalley M, Roohani Y, Mehrjou A, Leskovec J, Schwab P Commun Biol. 2025; 8(1):412.

PMID: 40069299 PMC: 11897147. DOI: 10.1038/s42003-025-07764-y.


Long non-coding RNA-MIR181A1HG acts as an oncogene and contributes to invasion and metastasis in gastric cancer.

Zhang J, Wei X, Xie Y, Peng S, Yang P, Chen Y Oncogene. 2025; .

PMID: 40044982 DOI: 10.1038/s41388-025-03323-1.


Implications of gene × environment interactions in post-traumatic stress disorder risk and treatment.

Seah C, Sidamon-Eristoff A, Huckins L, Brennand K J Clin Invest. 2025; 135(5).

PMID: 40026250 PMC: 11870735. DOI: 10.1172/JCI185102.


The lncRNA DUBR is regulated by CTCF and coordinates chromatin landscape and gene expression in hematopoietic cells.

Nunez-Martinez H, Tapia-Urzua G, Cerecedo-Castillo A, Peralta-Alvarez C, Guerrero G, Huarte M Nucleic Acids Res. 2025; 53(4).

PMID: 39995041 PMC: 11850227. DOI: 10.1093/nar/gkaf093.


RNAs anchoring replication complex control initiation and firing of DNA replication.

Ummarino S, Poluben L, Ebralidze A, Autiero I, Ebralidze A, Zhang Y Res Sq. 2025; .

PMID: 39975922 PMC: 11838740. DOI: 10.21203/rs.3.rs-5723221/v1.


References
1.
Mojica F, Diez-Villasenor C, Garcia-Martinez J, Almendros C . Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology (Reading). 2009; 155(Pt 3):733-740. DOI: 10.1099/mic.0.023960-0. View

2.
Lopez-Sanchez M, Sauvage E, Da Cunha V, Clermont D, Hariniaina E, Gonzalez-Zorn B . The highly dynamic CRISPR1 system of Streptococcus agalactiae controls the diversity of its mobilome. Mol Microbiol. 2012; 85(6):1057-71. DOI: 10.1111/j.1365-2958.2012.08172.x. View

3.
Ingolia N, Ghaemmaghami S, Newman J, Weissman J . Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science. 2009; 324(5924):218-23. PMC: 2746483. DOI: 10.1126/science.1168978. View

4.
Qi L, Haurwitz R, Shao W, Doudna J, Arkin A . RNA processing enables predictable programming of gene expression. Nat Biotechnol. 2012; 30(10):1002-6. DOI: 10.1038/nbt.2355. View

5.
Wiedenheft B, Lander G, Zhou K, Jore M, Brouns S, van der Oost J . Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature. 2011; 477(7365):486-489. PMC: 4165517. DOI: 10.1038/nature10402. View