» Articles » PMID: 29259750

Design and Synthesis of Piperazine Sulfonamide Cores Leading to Highly Potent HIV-1 Protease Inhibitors

Abstract

Using the HIV-1 protease binding mode of and as inspiration, a novel aspartate binding bicyclic piperazine sulfonamide core was designed and synthesized. The resulting HIV-1 protease inhibitor containing this core showed an 60-fold increase in enzyme binding affinity and a 10-fold increase in antiviral activity relative to .

Citing Articles

Comprehending the Structure, Dynamics, and Mechanism of Action of Drug-Resistant HIV Protease.

Dakshinamoorthy A, Asmita A, Senapati S ACS Omega. 2023; 8(11):9748-9763.

PMID: 36969469 PMC: 10034783. DOI: 10.1021/acsomega.2c08279.


Beyond darunavir: recent development of next generation HIV-1 protease inhibitors to combat drug resistance.

Ghosh A, Weber I, Mitsuya H Chem Commun (Camb). 2022; 58(84):11762-11782.

PMID: 36200462 PMC: 10942761. DOI: 10.1039/d2cc04541a.


Design, Synthesis and X-Ray Structural Studies of Potent HIV-1 Protease Inhibitors Containing C-4 Substituted Tricyclic Hexahydro-Furofuran Derivatives as P2 Ligands.

Ghosh A, Kovela S, Sharma A, Shahabi D, Ghosh A, Hopkins D ChemMedChem. 2022; 17(9):e202200058.

PMID: 35170223 PMC: 9081228. DOI: 10.1002/cmdc.202200058.


Synthesis, study (DFT, ADMET) and crystal structure of novel sulfamoyloxy-oxazolidinones: Interaction with SARS-CoV-2.

Bouzina A, Berredjem M, Bouacida S, Bachari K, Marminon C, Le Borgne M J Mol Struct. 2022; 1257:132579.

PMID: 35153333 PMC: 8817226. DOI: 10.1016/j.molstruc.2022.132579.


Drug Design Strategies to Avoid Resistance in Direct-Acting Antivirals and Beyond.

Matthew A, Leidner F, Lockbaum G, Henes M, Zephyr J, Hou S Chem Rev. 2021; 121(6):3238-3270.

PMID: 33410674 PMC: 8126998. DOI: 10.1021/acs.chemrev.0c00648.


References
1.
Bungard C, Williams P, Ballard J, Bennett D, Beaulieu C, Bahnck-Teets C . Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group. ACS Med Chem Lett. 2016; 7(7):702-7. PMC: 4948015. DOI: 10.1021/acsmedchemlett.6b00135. View

2.
Ghosh A, Osswald H, Prato G . Recent Progress in the Development of HIV-1 Protease Inhibitors for the Treatment of HIV/AIDS. J Med Chem. 2016; 59(11):5172-208. PMC: 5598487. DOI: 10.1021/acs.jmedchem.5b01697. View

3.
Crestey F, Witt M, Jaroszewski J, Franzyk H . Expedite protocol for construction of chiral regioselectively N-protected monosubstituted piperazine, 1,4-diazepane, and 1,4-diazocane building blocks. J Org Chem. 2009; 74(15):5652-5. DOI: 10.1021/jo900441s. View

4.
Jaskolski M, Tomasselli A, Sawyer T, Staples D, Heinrikson R, Schneider J . Structure at 2.5-A resolution of chemically synthesized human immunodeficiency virus type 1 protease complexed with a hydroxyethylene-based inhibitor. Biochemistry. 1991; 30(6):1600-9. DOI: 10.1021/bi00220a023. View

5.
Midde N, Patters B, Rao P, Cory T, Kumar S . Investigational protease inhibitors as antiretroviral therapies. Expert Opin Investig Drugs. 2016; 25(10):1189-200. PMC: 5228633. DOI: 10.1080/13543784.2016.1212837. View