» Articles » PMID: 24497546

Arf1/COPI Machinery Acts Directly on Lipid Droplets and Enables Their Connection to the ER for Protein Targeting

Overview
Journal Elife
Specialty Biology
Date 2014 Feb 6
PMID 24497546
Citations 144
Authors
Affiliations
Soon will be listed here.
Abstract

Lipid droplets (LDs) are ubiquitous organelles that store neutral lipids, such as triacylglycerol (TG), as reservoirs of metabolic energy and membrane precursors. The Arf1/COPI protein machinery, known for its role in vesicle trafficking, regulates LD morphology, targeting of specific proteins to LDs and lipolysis through unclear mechanisms. Recent evidence shows that Arf1/COPI can bud nano-LDs (∼60 nm diameter) from phospholipid-covered oil/water interfaces in vitro. We show that Arf1/COPI proteins localize to cellular LDs, are sufficient to bud nano-LDs from cellular LDs, and are required for targeting specific TG-synthesis enzymes to LD surfaces. Cells lacking Arf1/COPI function have increased amounts of phospholipids on LDs, resulting in decreased LD surface tension and impairment to form bridges to the ER. Our findings uncover a function for Arf1/COPI proteins at LDs and suggest a model in which Arf1/COPI machinery acts to control ER-LD connections for localization of key enzymes of TG storage and catabolism. DOI: http://dx.doi.org/10.7554/eLife.01607.001.

Citing Articles

Silencing FAF2 mitigates alcohol-induced hepatic steatosis by modulating lipolysis and PCSK9 pathway.

Huda N, Kusumanchi P, Jiang Y, Gao H, Thoudam T, Zeng G Hepatol Commun. 2025; 9(3).

PMID: 39969435 PMC: 11841855. DOI: 10.1097/HC9.0000000000000641.


The evolving landscape of ER-LD contact sites.

Kumar A, Yadav S, Choudhary V Front Cell Dev Biol. 2024; 12:1483902.

PMID: 39421023 PMC: 11484260. DOI: 10.3389/fcell.2024.1483902.


Surface tension-driven sorting of human perilipins on lipid droplets.

Dias Araujo A, Bello A, Bigay J, Franckhauser C, Gautier R, Cazareth J J Cell Biol. 2024; 223(12).

PMID: 39297796 PMC: 11413419. DOI: 10.1083/jcb.202403064.


Roles of lipid droplets and related proteins in metabolic diseases.

Zhang Z, Yu Z, Liang D, Song K, Kong X, He M Lipids Health Dis. 2024; 23(1):218.

PMID: 39030618 PMC: 11264848. DOI: 10.1186/s12944-024-02212-y.


Evolutionary trajectory for nuclear functions of ciliary transport complex proteins.

Ewerling A, May-Simera H Microbiol Mol Biol Rev. 2024; 88(3):e0000624.

PMID: 38995044 PMC: 11426024. DOI: 10.1128/mmbr.00006-24.


References
1.
Soni K, Mardones G, Sougrat R, Smirnova E, Jackson C, Bonifacino J . Coatomer-dependent protein delivery to lipid droplets. J Cell Sci. 2009; 122(Pt 11):1834-41. PMC: 2684835. DOI: 10.1242/jcs.045849. View

2.
Bouvet S, Golinelli-Cohen M, Contremoulins V, Jackson C . Targeting of the Arf-GEF GBF1 to lipid droplets and Golgi membranes. J Cell Sci. 2013; 126(Pt 20):4794-805. DOI: 10.1242/jcs.134254. View

3.
Brasaemle D, Wolins N . Packaging of fat: an evolving model of lipid droplet assembly and expansion. J Biol Chem. 2011; 287(4):2273-9. PMC: 3268387. DOI: 10.1074/jbc.R111.309088. View

4.
Yang H, Hsu C, Yang J, Yang W . Monodansylpentane as a blue-fluorescent lipid-droplet marker for multi-color live-cell imaging. PLoS One. 2012; 7(3):e32693. PMC: 3291611. DOI: 10.1371/journal.pone.0032693. View

5.
Hell S, Wichmann J . Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett. 2009; 19(11):780-2. DOI: 10.1364/ol.19.000780. View