» Articles » PMID: 23741432

Identification of Diverse Lipid Droplet Targeting Motifs in the PNPLA Family of Triglyceride Lipases

Overview
Journal PLoS One
Date 2013 Jun 7
PMID 23741432
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

Members of the Patatin-like Phospholipase Domain containing Protein A (PNPLA) family play key roles in triglyceride hydrolysis, energy metabolism, and lipid droplet (LD) homoeostasis. Here we report the identification of two distinct LD targeting motifs (LTM) for PNPLA family members. Transient transfection of truncated versions of human adipose triglyceride lipase (ATGL, also known as PNPLA2), PNPLA3/adiponutrin, or PNPLA5 (GS2-like) fused to GFP revealed that the C-terminal third of these proteins contains sequences that are sufficient for targeting to LDs. Furthermore, fusing the C-termini of PNPLA3 or PNPLA5 confers LD localization to PNPLA4, which is otherwise cytoplasmic. Analyses of additional mutants in ATGL, PNPLA5, and Brummer Lipase, the Drosophila homolog of mammalian ATGL, identified two different types of LTMs. The first type, in PNPLA5 and Brummer lipase, is a set of loosely conserved basic residues, while the second type, in ATGL, is contained within a stretch of hydrophobic residues. These results show that even closely related members of the PNPLA family employ different molecular motifs to associate with LDs.

Citing Articles

Lipid droplet targeting of the lipase coactivator ABHD5 and the fatty liver disease-causing variant PNPLA3 I148M is required to promote liver steatosis.

Teskey G, Tiwari N, Butcko A, Kumar A, Yadav A, Huang Y J Biol Chem. 2025; 301(2):108186.

PMID: 39814233 PMC: 11849118. DOI: 10.1016/j.jbc.2025.108186.


Lipid droplet targeting of ABHD5 and PNPLA3 I148M is required to promote liver steatosis.

Teskey G, Tiwari N, Butcko A, Kumar A, Yadav A, Huang Y bioRxiv. 2024; .

PMID: 39605541 PMC: 11601262. DOI: 10.1101/2024.10.03.616525.


A promising anti-tumor targeting on ERMMDs mediated abnormal lipid metabolism in tumor cells.

Pang M, Yu L, Li X, Lu C, Xiao C, Liu Y Cell Death Dis. 2024; 15(8):562.

PMID: 39098929 PMC: 11298533. DOI: 10.1038/s41419-024-06956-4.


Liver lipophagy ameliorates nonalcoholic steatohepatitis through extracellular lipid secretion.

Minami Y, Hoshino A, Higuchi Y, Hamaguchi M, Kaneko Y, Kirita Y Nat Commun. 2023; 14(1):4084.

PMID: 37443159 PMC: 10344867. DOI: 10.1038/s41467-023-39404-6.


The PNPLA family of enzymes: characterisation and biological role.

Lulic A, Katalinic M Arh Hig Rada Toksikol. 2023; 74(2):75-89.

PMID: 37357879 PMC: 10291501. DOI: 10.2478/aiht-2023-74-3723.


References
1.
Campagna F, Nanni L, Quagliarini F, Pennisi E, Michailidis C, Pierelli F . Novel mutations in the adipose triglyceride lipase gene causing neutral lipid storage disease with myopathy. Biochem Biophys Res Commun. 2008; 377(3):843-6. DOI: 10.1016/j.bbrc.2008.10.081. View

2.
Hsieh K, Lee Y, Londos C, Raaka B, Dalen K, Kimmel A . Perilipin family members preferentially sequester to either triacylglycerol-specific or cholesteryl-ester-specific intracellular lipid storage droplets. J Cell Sci. 2012; 125(Pt 17):4067-76. PMC: 3482316. DOI: 10.1242/jcs.104943. View

3.
Schweiger M, Paar M, Eder C, Brandis J, Moser E, Gorkiewicz G . G0/G1 switch gene-2 regulates human adipocyte lipolysis by affecting activity and localization of adipose triglyceride lipase. J Lipid Res. 2012; 53(11):2307-17. PMC: 3466000. DOI: 10.1194/jlr.M027409. View

4.
Reue K . A thematic review series: lipid droplet storage and metabolism: from yeast to man. J Lipid Res. 2011; 52(11):1865-8. PMC: 3196222. DOI: 10.1194/jlr.E020602. View

5.
Bell M, Wang H, Chen H, McLenithan J, Gong D, Yang R . Consequences of lipid droplet coat protein downregulation in liver cells: abnormal lipid droplet metabolism and induction of insulin resistance. Diabetes. 2008; 57(8):2037-45. PMC: 2494696. DOI: 10.2337/db07-1383. View