» Articles » PMID: 22661712

Crystal Structure of Human ADP-ribose Transferase ARTD15/PARP16 Reveals a Novel Putative Regulatory Domain

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2012 Jun 5
PMID 22661712
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

ADP-ribosylation is involved in the regulation of DNA repair, transcription, and other processes. The 18 human ADP-ribose transferases with diphtheria toxin homology include ARTD1/PARP1, a cancer drug target. Knowledge of other family members may guide therapeutics development and help evaluate potential drug side effects. Here, we present the crystal structure of human ARTD15/PARP16, a previously uncharacterized enzyme. ARTD15 features an α-helical domain that packs against its transferase domain without making direct contact with the NAD(+)-binding crevice or the donor loop. Thus, this novel domain does not resemble the regulatory domain of ARTD1. ARTD15 displays auto-mono(ADP-ribosylation) activity and is affected by canonical poly(ADP-ribose) polymerase inhibitors. These results add to a framework that will facilitate research on a medically important family of enzymes.

Citing Articles

Updated protein domain annotation of the PARP protein family sheds new light on biological function.

Suskiewicz M, Munnur D, Stromland O, Yang J, Easton L, Chatrin C Nucleic Acids Res. 2023; 51(15):8217-8236.

PMID: 37326024 PMC: 10450202. DOI: 10.1093/nar/gkad514.


Research Progress on Mono-ADP-Ribosyltransferases in Human Cell Biology.

Gan Y, Sha H, Zou R, Xu M, Zhang Y, Feng J Front Cell Dev Biol. 2022; 10:864101.

PMID: 35652091 PMC: 9149570. DOI: 10.3389/fcell.2022.864101.


Crystal structures of pertussis toxin with NAD and analogs provide structural insights into the mechanism of its cytosolic ADP-ribosylation activity.

Sakari M, Tran M, Rossjohn J, Pulliainen A, Beddoe T, Littler D J Biol Chem. 2022; 298(5):101892.

PMID: 35378130 PMC: 9079181. DOI: 10.1016/j.jbc.2022.101892.


The Significance of Targeting Poly (ADP-Ribose) Polymerase-1 in Pancreatic Cancer for Providing a New Therapeutic Paradigm.

Jeong K, Park M Int J Mol Sci. 2021; 22(7).

PMID: 33805293 PMC: 8037971. DOI: 10.3390/ijms22073509.


Bioinformatic Analysis of the Nicotinamide Binding Site in Poly(ADP-Ribose) Polymerase Family Proteins.

Manasaryan G, Suplatov D, Pushkarev S, Drobot V, Kuimov A, Svedas V Cancers (Basel). 2021; 13(6).

PMID: 33801950 PMC: 8002165. DOI: 10.3390/cancers13061201.


References
1.
Hakme A, Wong H, Dantzer F, Schreiber V . The expanding field of poly(ADP-ribosyl)ation reactions. 'Protein Modifications: Beyond the Usual Suspects' Review Series. EMBO Rep. 2008; 9(11):1094-100. PMC: 2581850. DOI: 10.1038/embor.2008.191. View

2.
Corda D, Di Girolamo M . Functional aspects of protein mono-ADP-ribosylation. EMBO J. 2003; 22(9):1953-8. PMC: 156081. DOI: 10.1093/emboj/cdg209. View

3.
Oliver A, Ame J, Roe S, Good V, de Murcia G, Pearl L . Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2. Nucleic Acids Res. 2004; 32(2):456-64. PMC: 373339. DOI: 10.1093/nar/gkh215. View

4.
Gileadi O, Burgess-Brown N, Colebrook S, Berridge G, Savitsky P, Smee C . High throughput production of recombinant human proteins for crystallography. Methods Mol Biol. 2008; 426:221-46. DOI: 10.1007/978-1-60327-058-8_14. View

5.
Wahlberg E, Karlberg T, Kouznetsova E, Markova N, Macchiarulo A, Thorsell A . Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat Biotechnol. 2012; 30(3):283-8. DOI: 10.1038/nbt.2121. View