Chernyshova I, Vasileva I, Moor N, Ivanisenko N, Kutuzov M, Abramova T
Int J Mol Sci. 2024; 25(23).
PMID: 39684238
PMC: 11640836.
DOI: 10.3390/ijms252312526.
Smith-Pillet E, Billur R, Langelier M, Talele T, Pascal J, Black B
bioRxiv. 2024; .
PMID: 38826291
PMC: 11142140.
DOI: 10.1101/2024.05.20.594972.
Szanto M, Yelamos J, Bai P
Expert Rev Mol Med. 2024; 26:e13.
PMID: 38698556
PMC: 11140550.
DOI: 10.1017/erm.2024.14.
Pillay N, Mariotti L, Zaleska M, Inian O, Jessop M, Hibbs S
Nature. 2022; 612(7938):162-169.
PMID: 36418402
PMC: 9712121.
DOI: 10.1038/s41586-022-05449-8.
Sakari M, Tran M, Rossjohn J, Pulliainen A, Beddoe T, Littler D
J Biol Chem. 2022; 298(5):101892.
PMID: 35378130
PMC: 9079181.
DOI: 10.1016/j.jbc.2022.101892.
Discovery of an NAD analogue with enhanced specificity for PARP1.
Zhang X, Lam A, Cheng Q, Courouble V, Strutzenberg T, Li J
Chem Sci. 2022; 13(7):1982-1991.
PMID: 35308855
PMC: 8848837.
DOI: 10.1039/d1sc06256e.
ADP-Ribosylation as Post-Translational Modification of Proteins: Use of Inhibitors in Cancer Control.
Poltronieri P, Miwa M, Masutani M
Int J Mol Sci. 2021; 22(19).
PMID: 34639169
PMC: 8509805.
DOI: 10.3390/ijms221910829.
Activation of PARP2/ARTD2 by DNA damage induces conformational changes relieving enzyme autoinhibition.
Obaji E, Maksimainen M, Galera-Prat A, Lehtio L
Nat Commun. 2021; 12(1):3479.
PMID: 34108479
PMC: 8190142.
DOI: 10.1038/s41467-021-23800-x.
PARP Power: A Structural Perspective on PARP1, PARP2, and PARP3 in DNA Damage Repair and Nucleosome Remodelling.
van Beek L, McClay E, Patel S, Schimpl M, Spagnolo L, De Oliveira T
Int J Mol Sci. 2021; 22(10).
PMID: 34066057
PMC: 8150716.
DOI: 10.3390/ijms22105112.
Design, Synthesis and Molecular Modeling Study of Conjugates of ADP and Morpholino Nucleosides as A Novel Class of Inhibitors of PARP-1, PARP-2 and PARP-3.
Sherstyuk Y, Ivanisenko N, Zakharenko A, Sukhanova M, Peshkov R, Eltsov I
Int J Mol Sci. 2020; 21(1).
PMID: 31892271
PMC: 6982223.
DOI: 10.3390/ijms21010214.
Synthesis and Evaluation of a Mitochondria-Targeting Poly(ADP-ribose) Polymerase-1 Inhibitor.
Krainz T, Lamade A, Du L, Maskrey T, Calderon M, Watkins S
ACS Chem Biol. 2018; 13(10):2868-2879.
PMID: 30184433
PMC: 6402482.
DOI: 10.1021/acschembio.8b00423.
Ligand fitting with CCP4.
Nicholls R
Acta Crystallogr D Struct Biol. 2017; 73(Pt 2):158-170.
PMID: 28177312
PMC: 5297919.
DOI: 10.1107/S2059798316020143.
Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors.
Thorsell A, Ekblad T, Karlberg T, Low M, Pinto A, Tresaugues L
J Med Chem. 2016; 60(4):1262-1271.
PMID: 28001384
PMC: 5934274.
DOI: 10.1021/acs.jmedchem.6b00990.
Characterization of the DNA dependent activation of human ARTD2/PARP2.
Obaji E, Haikarainen T, Lehtio L
Sci Rep. 2016; 6:34487.
PMID: 27708353
PMC: 5052650.
DOI: 10.1038/srep34487.
Inhibition of Poly(ADP-Ribose) Polymerase by Nucleic Acid Metabolite 7-Methylguanine.
Nilov D, Tararov V, Kulikov A, Zakharenko A, Gushchina I, Mikhailov S
Acta Naturae. 2016; 8(2):108-15.
PMID: 27437145
PMC: 4947994.
PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage.
Riccio A, Cingolani G, Pascal J
Nucleic Acids Res. 2015; 44(4):1691-702.
PMID: 26704974
PMC: 4770219.
DOI: 10.1093/nar/gkv1376.
Structural basis for lack of ADP-ribosyltransferase activity in poly(ADP-ribose) polymerase-13/zinc finger antiviral protein.
Karlberg T, Klepsch M, Thorsell A, Andersson C, Linusson A, Schuler H
J Biol Chem. 2015; 290(12):7336-44.
PMID: 25635049
PMC: 4367243.
DOI: 10.1074/jbc.M114.630160.
Insights into the binding of PARP inhibitors to the catalytic domain of human tankyrase-2.
Qiu W, Lam R, Voytyuk O, Romanov V, Gordon R, Gebremeskel S
Acta Crystallogr D Biol Crystallogr. 2014; 70(Pt 10):2740-53.
PMID: 25286857
PMC: 4188013.
DOI: 10.1107/S1399004714017660.
Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone.
Aoyagi-Scharber M, Gardberg A, Yip B, Wang B, Shen Y, Fitzpatrick P
Acta Crystallogr F Struct Biol Commun. 2014; 70(Pt 9):1143-9.
PMID: 25195882
PMC: 4157409.
DOI: 10.1107/S2053230X14015088.
DTX3L and ARTD9 inhibit IRF1 expression and mediate in cooperation with ARTD8 survival and proliferation of metastatic prostate cancer cells.
Bachmann S, Frommel S, Camicia R, Winkler H, Santoro R, Hassa P
Mol Cancer. 2014; 13:125.
PMID: 24886089
PMC: 4070648.
DOI: 10.1186/1476-4598-13-125.