6.
Hurley R, Anderson K, Franzone J, Kemp B, Means A, Witters L
. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem. 2005; 280(32):29060-6.
DOI: 10.1074/jbc.M503824200.
View
7.
Nelson M, Parker B, Burchfield J, Hoffman N, Needham E, Cooke K
. Phosphoproteomics reveals conserved exercise-stimulated signaling and AMPK regulation of store-operated calcium entry. EMBO J. 2019; 38(24):e102578.
PMC: 6912027.
DOI: 10.15252/embj.2019102578.
View
8.
Paquette M, El-Houjeiri L, Zirden L, Puustinen P, Blanchette P, Jeong H
. AMPK-dependent phosphorylation is required for transcriptional activation of TFEB and TFE3. Autophagy. 2021; 17(12):3957-3975.
PMC: 8726606.
DOI: 10.1080/15548627.2021.1898748.
View
9.
Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung S
. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 2006; 127(1):125-37.
DOI: 10.1016/j.cell.2006.08.033.
View
10.
Uhlen M, Fagerberg L, Hallstrom B, Lindskog C, Oksvold P, Mardinoglu A
. Proteomics. Tissue-based map of the human proteome. Science. 2015; 347(6220):1260419.
DOI: 10.1126/science.1260419.
View
11.
Steinberg G, Carling D
. AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov. 2019; 18(7):527-551.
DOI: 10.1038/s41573-019-0019-2.
View
12.
Zhou X, Zhong Y, Molinar-Inglis O, Kunkel M, Chen M, Sun T
. Location-specific inhibition of Akt reveals regulation of mTORC1 activity in the nucleus. Nat Commun. 2020; 11(1):6088.
PMC: 7705703.
DOI: 10.1038/s41467-020-19937-w.
View
13.
Atrih A, Turnock D, Sellar G, Thompson A, Feuerstein G, Ferguson M
. Stoichiometric quantification of Akt phosphorylation using LC-MS/MS. J Proteome Res. 2009; 9(2):743-51.
PMC: 2816933.
DOI: 10.1021/pr900572h.
View
14.
Gowans G, Hawley S, Ross F, Grahame Hardie D
. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab. 2013; 18(4):556-66.
PMC: 3791399.
DOI: 10.1016/j.cmet.2013.08.019.
View
15.
Hawley S, Ross F, Gowans G, Tibarewal P, Leslie N, Grahame Hardie D
. Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells. Biochem J. 2014; 459(2):275-87.
PMC: 4052680.
DOI: 10.1042/BJ20131344.
View
16.
Wang Y, Lei Q
. Metabolite sensing and signaling in cell metabolism. Signal Transduct Target Ther. 2018; 3:30.
PMC: 6224561.
DOI: 10.1038/s41392-018-0024-7.
View
17.
Rajamohan F, Reyes A, Frisbie R, Hoth L, Sahasrabudhe P, Magyar R
. Probing the enzyme kinetics, allosteric modulation and activation of α1- and α2-subunit-containing AMP-activated protein kinase (AMPK) heterotrimeric complexes by pharmacological and physiological activators. Biochem J. 2015; 473(5):581-92.
PMC: 4764975.
DOI: 10.1042/BJ20151051.
View
18.
Parker B, Yang G, Humphrey S, Chaudhuri R, Ma X, Peterman S
. Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal. 2015; 8(380):rs6.
DOI: 10.1126/scisignal.aaa3139.
View
19.
Pinkosky S, Scott J, Desjardins E, Smith B, Day E, Ford R
. Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK β1 isoforms. Nat Metab. 2020; 2(9):873-881.
PMC: 7502547.
DOI: 10.1038/s42255-020-0245-2.
View
20.
Myers R, Guan H, Ehrhart J, Petrov A, Prahalada S, Tozzo E
. Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science. 2017; 357(6350):507-511.
DOI: 10.1126/science.aah5582.
View