» Articles » PMID: 38509327

SpatialData: an Open and Universal Data Framework for Spatial Omics

Abstract

Spatially resolved omics technologies are transforming our understanding of biological tissues. However, the handling of uni- and multimodal spatial omics datasets remains a challenge owing to large data volumes, heterogeneity of data types and the lack of flexible, spatially aware data structures. Here we introduce SpatialData, a framework that establishes a unified and extensible multiplatform file-format, lazy representation of larger-than-memory data, transformations and alignment to common coordinate systems. SpatialData facilitates spatial annotations and cross-modal aggregation and analysis, the utility of which is illustrated in the context of multiple vignettes, including integrative analysis on a multimodal Xenium and Visium breast cancer study.

Citing Articles

Application of Spatial Omics in the Cardiovascular System.

Hu Y, Jia H, Cui H, Song J Research (Wash D C). 2025; 8:0628.

PMID: 40062231 PMC: 11889335. DOI: 10.34133/research.0628.


Geospatially informed representation of spatial genomics data with SpatialFeatureExperiment.

Moses L, Huseynov A, Rich J, Pachter L bioRxiv. 2025; .

PMID: 40060564 PMC: 11888365. DOI: 10.1101/2025.02.24.640007.


Towards the Next Generation of Data-Driven Therapeutics Using Spatially Resolved Single-Cell Technologies and Generative AI.

Rodov A, Baniadam H, Zeiser R, Amit I, Yosef N, Wertheimer T Eur J Immunol. 2025; 55(2):e202451234.

PMID: 39964048 PMC: 11834372. DOI: 10.1002/eji.202451234.


Integrative co-registration of elemental imaging and histopathology for enhanced spatial multimodal analysis of tissue sections through TRACE.

Lu Y, Han S, Srivastava A, Shaik N, Chan M, Diallo A Bioinform Adv. 2025; 5(1):vbaf001.

PMID: 39829713 PMC: 11742137. DOI: 10.1093/bioadv/vbaf001.


Spatially Resolved Multiomics: Data Analysis from Monoomics to Multiomics.

Huan C, Li J, Li Y, Zhao S, Yang Q, Zhang Z BME Front. 2025; 6():0084.

PMID: 39810754 PMC: 11725630. DOI: 10.34133/bmef.0084.


References
1.
Asp M, Bergenstrahle J, Lundeberg J . Spatially Resolved Transcriptomes-Next Generation Tools for Tissue Exploration. Bioessays. 2020; 42(10):e1900221. DOI: 10.1002/bies.201900221. View

2.
Rao A, Barkley D, Franca G, Yanai I . Exploring tissue architecture using spatial transcriptomics. Nature. 2021; 596(7871):211-220. PMC: 8475179. DOI: 10.1038/s41586-021-03634-9. View

3.
Vandereyken K, Sifrim A, Thienpont B, Voet T . Methods and applications for single-cell and spatial multi-omics. Nat Rev Genet. 2023; 24(8):494-515. PMC: 9979144. DOI: 10.1038/s41576-023-00580-2. View

4.
Seferbekova Z, Lomakin A, Yates L, Gerstung M . Spatial biology of cancer evolution. Nat Rev Genet. 2022; 24(5):295-313. DOI: 10.1038/s41576-022-00553-x. View

5.
Moses L, Pachter L . Museum of spatial transcriptomics. Nat Methods. 2022; 19(5):534-546. DOI: 10.1038/s41592-022-01409-2. View