» Articles » PMID: 37428210

OME-Zarr: a Cloud-optimized Bioimaging File Format with International Community Support

Abstract

A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the cloud-optimized format itself-OME-Zarr-along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process. The current momentum offers an opportunity to unify a key component of the bioimaging domain-the file format that underlies so many personal, institutional, and global data management and analysis tasks.

Citing Articles

A scoping study of the whole-cell imaging literature: a foundational corpus, potential for data-mining and research synthesis, and a call for standardization of an emerging field.

Mirvis M, Weingard B, Goodman S, Marshall W bioRxiv. 2025; .

PMID: 39975100 PMC: 11838562. DOI: 10.1101/2025.02.03.636363.


tttrlib: modular software for integrating fluorescence spectroscopy, imaging, and molecular modeling.

Peulen T, Hemmen K, Greife A, Webb B, Felekyan S, Sali A Bioinformatics. 2025; 41(2).

PMID: 39836627 PMC: 11796090. DOI: 10.1093/bioinformatics/btaf025.


The Brain Image Library: A Community-Contributed Microscopy Resource for Neuroscientists.

Kenney M, Vasylieva I, Hood G, Cao-Berg I, Tuite L, Laghaei R Sci Data. 2024; 11(1):1212.

PMID: 39528496 PMC: 11555234. DOI: 10.1038/s41597-024-03761-8.


Homebuilt Imaging-Based Spatial Transcriptomics: Tertiary Lymphoid Structures as a Case Example.

Defard T, Desrentes A, Fouillade C, Mueller F Methods Mol Biol. 2024; 2864:77-105.

PMID: 39527218 DOI: 10.1007/978-1-0716-4184-2_5.


Making the most of bioimaging data through interdisciplinary interactions.

Uhlmann V, Hartley M, Moore J, Weisbart E, Zaritsky A J Cell Sci. 2024; 137(20).

PMID: 39440474 PMC: 11529881. DOI: 10.1242/jcs.262139.


References
1.
Besson S, Leigh R, Linkert M, Allan C, Burel J, Carroll M . Bringing Open Data to Whole Slide Imaging. Digit Pathol (2019). 2019; 2019:3-10. PMC: 6774793. DOI: 10.1007/978-3-030-23937-4_1. View

2.
Ali H, Jackson H, Zanotelli V, Danenberg E, Fischer J, Bardwell H . Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer. Nat Cancer. 2022; 1(2):163-175. DOI: 10.1038/s43018-020-0026-6. View

3.
Pietzsch T, Saalfeld S, Preibisch S, Tomancak P . BigDataViewer: visualization and processing for large image data sets. Nat Methods. 2015; 12(6):481-3. DOI: 10.1038/nmeth.3392. View

4.
Wilkinson M, Dumontier M, Aalbersberg I, Appleton G, Axton M, Baak A . The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016; 3:160018. PMC: 4792175. DOI: 10.1038/sdata.2016.18. View

5.
Schapiro D, Yapp C, Sokolov A, Reynolds S, Chen Y, Sudar D . MITI minimum information guidelines for highly multiplexed tissue images. Nat Methods. 2022; 19(3):262-267. PMC: 9009186. DOI: 10.1038/s41592-022-01415-4. View