» Articles » PMID: 31835027

Toward a Common Coordinate Framework for the Human Body

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2019 Dec 14
PMID 31835027
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

Understanding the genetic and molecular drivers of phenotypic heterogeneity across individuals is central to biology. As new technologies enable fine-grained and spatially resolved molecular profiling, we need new computational approaches to integrate data from the same organ across different individuals into a consistent reference and to construct maps of molecular and cellular organization at histological and anatomical scales. Here, we review previous efforts and discuss challenges involved in establishing such a common coordinate framework, the underlying map of tissues and organs. We focus on strategies to handle anatomical variation across individuals and highlight the need for new technologies and analytical methods spanning multiple hierarchical scales of spatial resolution.

Citing Articles

Human BioMolecular Atlas Program (HuBMAP): 3D Human Reference Atlas construction and usage.

Borner K, Blood P, Silverstein J, Ruffalo M, Satija R, Teichmann S Nat Methods. 2025; .

PMID: 40082611 DOI: 10.1038/s41592-024-02563-5.


Mapping cells through time and space with moscot.

Klein D, Palla G, Lange M, Klein M, Piran Z, Gander M Nature. 2025; 638(8052):1065-1075.

PMID: 39843746 PMC: 11864987. DOI: 10.1038/s41586-024-08453-2.


Techniques and analytic workflow for spatial transcriptomics and its application to allergy and inflammation.

Zhang H, Patrick M, Zhao J, Zhai X, Liu J, Li Z J Allergy Clin Immunol. 2025; 155(3):678-687.

PMID: 39837466 PMC: 11875981. DOI: 10.1016/j.jaci.2025.01.009.


The human and non-human primate developmental GTEx projects.

Coorens T, Guillaumet-Adkins A, Kovner R, Linn R, Roberts V, Sule A Nature. 2025; 637(8046):557-564.

PMID: 39815096 DOI: 10.1038/s41586-024-08244-9.


A spatial human thymus cell atlas mapped to a continuous tissue axis.

Yayon N, Kedlian V, Boehme L, Suo C, Wachter B, Beuschel R Nature. 2024; 635(8039):708-718.

PMID: 39567784 PMC: 11578893. DOI: 10.1038/s41586-024-07944-6.


References
1.
Fonov V, Evans A, Botteron K, Almli C, McKinstry R, Collins D . Unbiased average age-appropriate atlases for pediatric studies. Neuroimage. 2010; 54(1):313-27. PMC: 2962759. DOI: 10.1016/j.neuroimage.2010.07.033. View

2.
Rodriques S, Stickels R, Goeva A, Martin C, Murray E, Vanderburg C . Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019; 363(6434):1463-1467. PMC: 6927209. DOI: 10.1126/science.aaw1219. View

3.
. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature. 2019; 574(7777):187-192. PMC: 6800388. DOI: 10.1038/s41586-019-1629-x. View

4.
Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K . A four-dimensional probabilistic atlas of the human brain. J Am Med Inform Assoc. 2001; 8(5):401-30. PMC: 131040. DOI: 10.1136/jamia.2001.0080401. View

5.
Christensen G, Joshi S, Miller M . Volumetric transformation of brain anatomy. IEEE Trans Med Imaging. 1998; 16(6):864-77. DOI: 10.1109/42.650882. View