Hackenberg M, Brunn N, Vogel T, Binder H
Commun Biol. 2025; 8(1):414.
PMID: 40069486
PMC: 11897155.
DOI: 10.1038/s42003-025-07872-9.
Pouyabahar D, Andrews T, Bader G
Nat Commun. 2025; 16(1):1878.
PMID: 39987196
PMC: 11846867.
DOI: 10.1038/s41467-025-57157-2.
Rodov A, Baniadam H, Zeiser R, Amit I, Yosef N, Wertheimer T
Eur J Immunol. 2025; 55(2):e202451234.
PMID: 39964048
PMC: 11834372.
DOI: 10.1002/eji.202451234.
Davidson N, Zhang F, Greene C
PLoS Comput Biol. 2025; 21(1):e1012742.
PMID: 39823522
PMC: 11790236.
DOI: 10.1371/journal.pcbi.1012742.
Lin S, Jia P
Gigascience. 2024; 13.
PMID: 39704704
PMC: 11659981.
DOI: 10.1093/gigascience/giae108.
scPair: Boosting single cell multimodal analysis by leveraging implicit feature selection and single cell atlases.
Hu H, Quon G
Nat Commun. 2024; 15(1):9932.
PMID: 39548084
PMC: 11568318.
DOI: 10.1038/s41467-024-53971-2.
Designing interpretable deep learning applications for functional genomics: a quantitative analysis.
van Hilten A, Katz S, Saccenti E, Niessen W, Roshchupkin G
Brief Bioinform. 2024; 25(5).
PMID: 39293804
PMC: 11410376.
DOI: 10.1093/bib/bbae449.
Interpretable single-cell factor decomposition using sciRED.
Pouyabahar D, Andrews T, Bader G
Res Sq. 2024; .
PMID: 39149508
PMC: 11326389.
DOI: 10.21203/rs.3.rs-4819117/v1.
Interpretable single-cell factor decomposition using sciRED.
Pouyabahar D, Andrews T, Bader G
bioRxiv. 2024; .
PMID: 39149356
PMC: 11326131.
DOI: 10.1101/2024.08.01.605536.
Comprehensive single-cell RNA-seq analysis using deep interpretable generative modeling guided by biological hierarchy knowledge.
Chen H, Lu Y, Dai Z, Yang Y, Li Q, Rao Y
Brief Bioinform. 2024; 25(4).
PMID: 38960404
PMC: 11221887.
DOI: 10.1093/bib/bbae314.
Interpretable deep learning in single-cell omics.
Wagle M, Long S, Chen C, Liu C, Yang P
Bioinformatics. 2024; 40(6).
PMID: 38889275
PMC: 11211213.
DOI: 10.1093/bioinformatics/btae374.
scBiG for representation learning of single-cell gene expression data based on bipartite graph embedding.
Li T, Qian K, Wang X, Li W, Li H
NAR Genom Bioinform. 2024; 6(1):lqae004.
PMID: 38288376
PMC: 10823585.
DOI: 10.1093/nargab/lqae004.
Model-based evaluation of spatiotemporal data reduction methods with unknown ground truth through optimal visualization and interpretability metrics.
Atitey K, Motsinger-Reif A, Anchang B
Brief Bioinform. 2023; 25(1).
PMID: 38113074
PMC: 10729792.
DOI: 10.1093/bib/bbad455.
scAce: an adaptive embedding and clustering method for single-cell gene expression data.
He X, Qian K, Wang Z, Zeng S, Li H, Li W
Bioinformatics. 2023; 39(9).
PMID: 37672035
PMC: 10500084.
DOI: 10.1093/bioinformatics/btad546.
GTM-decon: guided-topic modeling of single-cell transcriptomes enables sub-cell-type and disease-subtype deconvolution of bulk transcriptomes.
Swapna L, Huang M, Li Y
Genome Biol. 2023; 24(1):190.
PMID: 37596691
PMC: 10436670.
DOI: 10.1186/s13059-023-03034-4.
NCAE: data-driven representations using a deep network-coherent DNA methylation autoencoder identify robust disease and risk factor signatures.
Martinez-Enguita D, Dwivedi S, Jornsten R, Gustafsson M
Brief Bioinform. 2023; 24(5).
PMID: 37587790
PMC: 10516364.
DOI: 10.1093/bib/bbad293.
BuDDI: to predict cell-type-specific perturbations from bulk.
Davidson N, Zhang F, Greene C
bioRxiv. 2023; .
PMID: 37503097
PMC: 10370205.
DOI: 10.1101/2023.07.20.549951.
siVAE: interpretable deep generative models for single-cell transcriptomes.
Choi Y, Li R, Quon G
Genome Biol. 2023; 24(1):29.
PMID: 36803416
PMC: 9940350.
DOI: 10.1186/s13059-023-02850-y.