» Articles » PMID: 36803416

SiVAE: Interpretable Deep Generative Models for Single-cell Transcriptomes

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2023 Feb 21
PMID 36803416
Authors
Affiliations
Soon will be listed here.
Abstract

Neural networks such as variational autoencoders (VAE) perform dimensionality reduction for the visualization and analysis of genomic data, but are limited in their interpretability: it is unknown which data features are represented by each embedding dimension. We present siVAE, a VAE that is interpretable by design, thereby enhancing downstream analysis tasks. Through interpretation, siVAE also identifies gene modules and hubs without explicit gene network inference. We use siVAE to identify gene modules whose connectivity is associated with diverse phenotypes such as iPSC neuronal differentiation efficiency and dementia, showcasing the wide applicability of interpretable generative models for genomic data analysis.

Citing Articles

Infusing structural assumptions into dimensionality reduction for single-cell RNA sequencing data to identify small gene sets.

Hackenberg M, Brunn N, Vogel T, Binder H Commun Biol. 2025; 8(1):414.

PMID: 40069486 PMC: 11897155. DOI: 10.1038/s42003-025-07872-9.


Interpretable single-cell factor decomposition using sciRED.

Pouyabahar D, Andrews T, Bader G Nat Commun. 2025; 16(1):1878.

PMID: 39987196 PMC: 11846867. DOI: 10.1038/s41467-025-57157-2.


Towards the Next Generation of Data-Driven Therapeutics Using Spatially Resolved Single-Cell Technologies and Generative AI.

Rodov A, Baniadam H, Zeiser R, Amit I, Yosef N, Wertheimer T Eur J Immunol. 2025; 55(2):e202451234.

PMID: 39964048 PMC: 11834372. DOI: 10.1002/eji.202451234.


BuDDI: Bulk Deconvolution with Domain Invariance to predict cell-type-specific perturbations from bulk.

Davidson N, Zhang F, Greene C PLoS Comput Biol. 2025; 21(1):e1012742.

PMID: 39823522 PMC: 11790236. DOI: 10.1371/journal.pcbi.1012742.


scGraph2Vec: a deep generative model for gene embedding augmented by graph neural network and single-cell omics data.

Lin S, Jia P Gigascience. 2024; 13.

PMID: 39704704 PMC: 11659981. DOI: 10.1093/gigascience/giae108.


References
1.
Jiang L, Chen H, Pinello L, Yuan G . GiniClust: detecting rare cell types from single-cell gene expression data with Gini index. Genome Biol. 2016; 17(1):144. PMC: 4930624. DOI: 10.1186/s13059-016-1010-4. View

2.
Bergen V, Lange M, Peidli S, Wolf F, Theis F . Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol. 2020; 38(12):1408-1414. DOI: 10.1038/s41587-020-0591-3. View

3.
Wolf F, Angerer P, Theis F . SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018; 19(1):15. PMC: 5802054. DOI: 10.1186/s13059-017-1382-0. View

4.
Castelo R, Roverato A . Reverse engineering molecular regulatory networks from microarray data with qp-graphs. J Comput Biol. 2009; 16(2):213-27. DOI: 10.1089/cmb.2008.08TT. View

5.
Seninge L, Anastopoulos I, Ding H, Stuart J . VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics. Nat Commun. 2021; 12(1):5684. PMC: 8478947. DOI: 10.1038/s41467-021-26017-0. View