» Articles » PMID: 27368803

GiniClust: Detecting Rare Cell Types from Single-cell Gene Expression Data with Gini Index

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2016 Jul 3
PMID 27368803
Citations 128
Authors
Affiliations
Soon will be listed here.
Abstract

High-throughput single-cell technologies have great potential to discover new cell types; however, it remains challenging to detect rare cell types that are distinct from a large population. We present a novel computational method, called GiniClust, to overcome this challenge. Validation against a benchmark dataset indicates that GiniClust achieves high sensitivity and specificity. Application of GiniClust to public single-cell RNA-seq datasets uncovers previously unrecognized rare cell types, including Zscan4-expressing cells within mouse embryonic stem cells and hemoglobin-expressing cells in the mouse cortex and hippocampus. GiniClust also correctly detects a small number of normal cells that are mixed in a cancer cell population.

Citing Articles

scMFG: a single-cell multi-omics integration method based on feature grouping.

Ma L, Liu J, Sun W, Zhao C, Yu L BMC Genomics. 2025; 26(1):132.

PMID: 39934664 PMC: 11817349. DOI: 10.1186/s12864-025-11319-0.


GraphPCA: a fast and interpretable dimension reduction algorithm for spatial transcriptomics data.

Yang J, Wang L, Liu L, Zheng X Genome Biol. 2024; 25(1):287.

PMID: 39511664 PMC: 11545739. DOI: 10.1186/s13059-024-03429-x.


Statistically principled feature selection for single cell transcriptomics.

Dollinger E, Silkwood K, Atwood S, Nie Q, Lander A bioRxiv. 2024; .

PMID: 39463971 PMC: 11507810. DOI: 10.1101/2024.10.11.617709.


Leveraging gene correlations in single cell transcriptomic data.

Silkwood K, Dollinger E, Gervin J, Atwood S, Nie Q, Lander A BMC Bioinformatics. 2024; 25(1):305.

PMID: 39294560 PMC: 11411778. DOI: 10.1186/s12859-024-05926-z.


scCAD: Cluster decomposition-based anomaly detection for rare cell identification in single-cell expression data.

Xu Y, Wang S, Feng Q, Xia J, Li Y, Li H Nat Commun. 2024; 15(1):7561.

PMID: 39215003 PMC: 11364754. DOI: 10.1038/s41467-024-51891-9.


References
1.
Anders S, Pyl P, Huber W . HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014; 31(2):166-9. PMC: 4287950. DOI: 10.1093/bioinformatics/btu638. View

2.
Love M, Anders S, Kim V, Huber W . RNA-Seq workflow: gene-level exploratory analysis and differential expression. F1000Res. 2015; 4:1070. PMC: 4670015. DOI: 10.12688/f1000research.7035.1. View

3.
Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek A . MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015; 16:278. PMC: 4676162. DOI: 10.1186/s13059-015-0844-5. View

4.
Stegle O, Teichmann S, Marioni J . Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 2015; 16(3):133-45. DOI: 10.1038/nrg3833. View

5.
Biagioli M, Pinto M, Cesselli D, Zaninello M, Lazarevic D, Roncaglia P . Unexpected expression of alpha- and beta-globin in mesencephalic dopaminergic neurons and glial cells. Proc Natl Acad Sci U S A. 2009; 106(36):15454-9. PMC: 2732704. DOI: 10.1073/pnas.0813216106. View