» Articles » PMID: 34584103

VEGA is an Interpretable Generative Model for Inferring Biological Network Activity in Single-cell Transcriptomics

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Sep 29
PMID 34584103
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

Deep learning architectures such as variational autoencoders have revolutionized the analysis of transcriptomics data. However, the latent space of these variational autoencoders offers little to no interpretability. To provide further biological insights, we introduce a novel sparse Variational Autoencoder architecture, VEGA (VAE Enhanced by Gene Annotations), whose decoder wiring mirrors user-provided gene modules, providing direct interpretability to the latent variables. We demonstrate the performance of VEGA in diverse biological contexts using pathways, gene regulatory networks and cell type identities as the gene modules that define its latent space. VEGA successfully recapitulates the mechanism of cellular-specific response to treatments, the status of master regulators as well as jointly revealing the cell type and cellular state identity in developing cells. We envision the approach could serve as an explanatory biological model for development and drug treatment experiments.

Citing Articles

Beyond the black box with biologically informed neural networks.

Selby D, Sprang M, Ewald J, Vollmer S Nat Rev Genet. 2025; .

PMID: 40038452 DOI: 10.1038/s41576-025-00826-1.


Towards the Next Generation of Data-Driven Therapeutics Using Spatially Resolved Single-Cell Technologies and Generative AI.

Rodov A, Baniadam H, Zeiser R, Amit I, Yosef N, Wertheimer T Eur J Immunol. 2025; 55(2):e202451234.

PMID: 39964048 PMC: 11834372. DOI: 10.1002/eji.202451234.


BuDDI: Bulk Deconvolution with Domain Invariance to predict cell-type-specific perturbations from bulk.

Davidson N, Zhang F, Greene C PLoS Comput Biol. 2025; 21(1):e1012742.

PMID: 39823522 PMC: 11790236. DOI: 10.1371/journal.pcbi.1012742.


Advances and applications in single-cell and spatial genomics.

Wang J, Ye F, Chai H, Jiang Y, Wang T, Ran X Sci China Life Sci. 2025; .

PMID: 39792333 DOI: 10.1007/s11427-024-2770-x.


Deep learning models reveal the link between dynamic brain connectivity patterns and states of consciousness.

Gomez C, Uhrig L, Frouin V, Duchesnay E, Jarraya B, Grigis A Sci Rep. 2024; 14(1):31606.

PMID: 39738114 PMC: 11686193. DOI: 10.1038/s41598-024-76695-1.


References
1.
Kurata K, Onoda N, Noda S, Kashiwagi S, Asano Y, Hirakawa K . Growth arrest by activated BRAF and MEK inhibition in human anaplastic thyroid cancer cells. Int J Oncol. 2016; 49(6):2303-2308. DOI: 10.3892/ijo.2016.3723. View

2.
Mellor A, Lemos H, Huang L . Indoleamine 2,3-Dioxygenase and Tolerance: Where Are We Now?. Front Immunol. 2017; 8:1360. PMC: 5663846. DOI: 10.3389/fimmu.2017.01360. View

3.
Wolf F, Angerer P, Theis F . SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018; 19(1):15. PMC: 5802054. DOI: 10.1186/s13059-017-1382-0. View

4.
Buettner F, Pratanwanich N, McCarthy D, Marioni J, Stegle O . f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq. Genome Biol. 2017; 18(1):212. PMC: 5674756. DOI: 10.1186/s13059-017-1334-8. View

5.
Darmanis S, Sloan S, Croote D, Mignardi M, Chernikova S, Samghababi P . Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma. Cell Rep. 2017; 21(5):1399-1410. PMC: 5810554. DOI: 10.1016/j.celrep.2017.10.030. View