» Articles » PMID: 36765063

Modeling CRISPR-Cas13d On-target and Off-target Effects Using Machine Learning Approaches

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Feb 10
PMID 36765063
Authors
Affiliations
Soon will be listed here.
Abstract

A major challenge in the application of the CRISPR-Cas13d system is to accurately predict its guide-dependent on-target and off-target effect. Here, we perform CRISPR-Cas13d proliferation screens and design a deep learning model, named DeepCas13, to predict the on-target activity from guide sequences and secondary structures. DeepCas13 outperforms existing methods to predict the efficiency of guides targeting both protein-coding and non-coding RNAs. Guides targeting non-essential genes display off-target viability effects, which are closely related to their on-target efficiencies. Choosing proper negative control guides during normalization mitigates the associated false positives in proliferation screens. We apply DeepCas13 to the guides targeting lncRNAs, and identify lncRNAs that affect cell viability and proliferation in multiple cell lines. The higher prediction accuracy of DeepCas13 over existing methods is extensively confirmed via a secondary CRISPR-Cas13d screen and quantitative RT-PCR experiments. DeepCas13 is freely accessible via http://deepcas13.weililab.org .

Citing Articles

The role of tumor-derived exosomal LncRNA in tumor metastasis.

Yu Z, Fu J, Mantareva V, Blazevic I, Wu Y, Wen D Cancer Gene Ther. 2025; .

PMID: 40011710 DOI: 10.1038/s41417-024-00852-x.


Chemical engineering of CRISPR-Cas systems for therapeutic application.

Barber H, Pater A, Gagnon K, Damha M, OReilly D Nat Rev Drug Discov. 2024; 24(3):209-230.

PMID: 39690326 DOI: 10.1038/s41573-024-01086-0.


The Evolution of Nucleic Acid-Based Diagnosis Methods from the (pre-)CRISPR to CRISPR era and the Associated Machine/Deep Learning Approaches in Relevant RNA Design.

Chakraborty S, Ray Dutta J, Ganesan R, Minary P Methods Mol Biol. 2024; 2847:241-300.

PMID: 39312149 DOI: 10.1007/978-1-0716-4079-1_17.


A deep learning-based method enables the automatic and accurate assembly of chromosome-level genomes.

Jiang Z, Peng Z, Wei Z, Sun J, Luo Y, Bie L Nucleic Acids Res. 2024; 52(19):e92.

PMID: 39287126 PMC: 11514472. DOI: 10.1093/nar/gkae789.


Exploring potential roles of long non-coding RNAs in cancer immunotherapy: a comprehensive review.

Arshi A, Mahmoudi E, Raeisi F, Dehghan Tezerjani M, Bahramian E, Ahmed Y Front Immunol. 2024; 15:1446937.

PMID: 39257589 PMC: 11384988. DOI: 10.3389/fimmu.2024.1446937.


References
1.
Lorenz R, Bernhart S, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler P . ViennaRNA Package 2.0. Algorithms Mol Biol. 2011; 6:26. PMC: 3319429. DOI: 10.1186/1748-7188-6-26. View

2.
Ackerman C, Myhrvold C, Thakku S, Freije C, Metsky H, Yang D . Massively multiplexed nucleic acid detection with Cas13. Nature. 2020; 582(7811):277-282. PMC: 7332423. DOI: 10.1038/s41586-020-2279-8. View

3.
Doench J, Fusi N, Sullender M, Hegde M, Vaimberg E, Donovan K . Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016; 34(2):184-191. PMC: 4744125. DOI: 10.1038/nbt.3437. View

4.
Aguirre A, Meyers R, Weir B, Vazquez F, Zhang C, Ben-David U . Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting. Cancer Discov. 2016; 6(8):914-29. PMC: 4972686. DOI: 10.1158/2159-8290.CD-16-0154. View

5.
Pallaseni A, Peets E, Koeppel J, Weller J, Vanderstichele T, Ho U . Predicting base editing outcomes using position-specific sequence determinants. Nucleic Acids Res. 2022; 50(6):3551-3564. PMC: 8989541. DOI: 10.1093/nar/gkac161. View