» Articles » PMID: 27256883

C2c2 is a Single-component Programmable RNA-guided RNA-targeting CRISPR Effector

Abstract

The clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated genes (Cas) adaptive immune system defends microbes against foreign genetic elements via DNA or RNA-DNA interference. We characterize the class 2 type VI CRISPR-Cas effector C2c2 and demonstrate its RNA-guided ribonuclease function. C2c2 from the bacterium Leptotrichia shahii provides interference against RNA phage. In vitro biochemical analysis shows that C2c2 is guided by a single CRISPR RNA and can be programmed to cleave single-stranded RNA targets carrying complementary protospacers. In bacteria, C2c2 can be programmed to knock down specific mRNAs. Cleavage is mediated by catalytic residues in the two conserved Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) domains, mutations of which generate catalytically inactive RNA-binding proteins. These results broaden our understanding of CRISPR-Cas systems and suggest that C2c2 can be used to develop new RNA-targeting tools.

Citing Articles

A Streamlined Point-of-Care CRISPR Test for Tuberculosis Detection Directly from Sputum.

Dunkley O, Bell A, Modi N, Huang Y, Tseng S, Reiss R medRxiv. 2025; .

PMID: 40034782 PMC: 11875272. DOI: 10.1101/2025.02.19.25322517.


Direct lysis combined with amplification-free CRISPR/Cas12a-SERS genosensor for ultrafast and on-site identification of meat authenticity.

Liu J, Wang Y, Zhang X, Huang M, Li G Mikrochim Acta. 2025; 192(3):187.

PMID: 39998577 DOI: 10.1007/s00604-024-06932-x.


Single-molecule live-cell RNA imaging with CRISPR-Csm.

Xia C, Colognori D, Jiang X, Xu K, Doudna J Nat Biotechnol. 2025; .

PMID: 39966655 DOI: 10.1038/s41587-024-02540-5.


CRISPR-based gene editing in plants: Focus on reagents and their delivery tools.

Ebrahimi V, Hashemi A Bioimpacts. 2025; 15:30019.

PMID: 39963563 PMC: 11830140. DOI: 10.34172/bi.30019.


Precise Gene Editing Technologies in Retinal Applications.

Ahmadian M, Okan I, Uyanik G, Tschopp M, Agca C Adv Exp Med Biol. 2025; 1468:119-123.

PMID: 39930183 DOI: 10.1007/978-3-031-76550-6_20.


References
1.
Jiang W, Samai P, Marraffini L . Degradation of Phage Transcripts by CRISPR-Associated RNases Enables Type III CRISPR-Cas Immunity. Cell. 2016; 164(4):710-21. PMC: 4752873. DOI: 10.1016/j.cell.2015.12.053. View

2.
Staals R, Zhu Y, Taylor D, Kornfeld J, Sharma K, Barendregt A . RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Mol Cell. 2014; 56(4):518-30. PMC: 4342149. DOI: 10.1016/j.molcel.2014.10.005. View

3.
van der Oost J, Jore M, Westra E, Lundgren M, Brouns S . CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci. 2009; 34(8):401-7. DOI: 10.1016/j.tibs.2009.05.002. View

4.
Shmakov S, Abudayyeh O, Makarova K, Wolf Y, Gootenberg J, Semenova E . Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Mol Cell. 2015; 60(3):385-97. PMC: 4660269. DOI: 10.1016/j.molcel.2015.10.008. View

5.
Makarova K, Wolf Y, Alkhnbashi O, Costa F, Shah S, Saunders S . An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 2015; 13(11):722-36. PMC: 5426118. DOI: 10.1038/nrmicro3569. View