Toward Learning the Rules That Predict SiRNA Efficacy
Overview
Overview
Authors
Authors
Affiliations
Affiliations
Soon will be listed here.
References
1.
Reynolds A, Leake D, Boese Q, Scaringe S, Marshall W, Khvorova A
. Rational siRNA design for RNA interference. Nat Biotechnol. 2004; 22(3):326-30.
DOI: 10.1038/nbt936.
View
2.
Monopoli K, Korkin D, Khvorova A
. Asymmetric trichotomous partitioning overcomes dataset limitations in building machine learning models for predicting siRNA efficacy. Mol Ther Nucleic Acids. 2023; 33:93-109.
PMC: 10338369.
DOI: 10.1016/j.omtn.2023.06.010.
View
3.
Huesken D, Lange J, Mickanin C, Weiler J, Asselbergs F, Warner J
. Design of a genome-wide siRNA library using an artificial neural network. Nat Biotechnol. 2005; 23(8):995-1001.
DOI: 10.1038/nbt1118.
View
4.
Gainetdinov I, Vega-Badillo J, Cecchini K, Bagci A, Colpan C, De D
. Relaxed targeting rules help PIWI proteins silence transposons. Nature. 2023; 619(7969):394-402.
PMC: 10338343.
DOI: 10.1038/s41586-023-06257-4.
View
5.
McGeary S, Lin K, Shi C, Pham T, Bisaria N, Kelley G
. The biochemical basis of microRNA targeting efficacy. Science. 2019; 366(6472).
PMC: 7051167.
DOI: 10.1126/science.aav1741.
View