» Articles » PMID: 38702571

Structures, Mechanisms and Applications of RNA-centric CRISPR-Cas13

Overview
Journal Nat Chem Biol
Date 2024 May 3
PMID 38702571
Authors
Affiliations
Soon will be listed here.
Abstract

Prokaryotes are equipped with a variety of resistance strategies to survive frequent viral attacks or invading mobile genetic elements. Among these, CRISPR-Cas surveillance systems are abundant and have been studied extensively. This Review focuses on CRISPR-Cas type VI Cas13 systems that use single-subunit RNA-guided Cas endonucleases for targeting and subsequent degradation of foreign RNA, thereby providing adaptive immunity. Notably, distinct from single-subunit DNA-cleaving Cas9 and Cas12 systems, Cas13 exhibits target RNA-activated substrate RNase activity. This Review outlines structural, biochemical and cell biological studies toward elucidation of the unique structural and mechanistic principles underlying surveillance effector complex formation, precursor CRISPR RNA (pre-crRNA) processing, self-discrimination and RNA degradation in Cas13 systems as well as insights into suppression by bacteriophage-encoded anti-CRISPR proteins and regulation by endogenous accessory proteins. Owing to its programmable ability for RNA recognition and cleavage, Cas13 provides powerful RNA targeting, editing, detection and imaging platforms with emerging biotechnological and therapeutic applications.

Citing Articles

CRISPR-Cas applications in agriculture and plant research.

Tuncel A, Pan C, Clem J, Liu D, Qi Y Nat Rev Mol Cell Biol. 2025; .

PMID: 40055491 DOI: 10.1038/s41580-025-00834-3.


CRISPR/Cas9 Genome Editing in the Diamondback Moth: Current Progress, Challenges, and Prospects.

Asad M, Chang Y, Liao J, Yang G Int J Mol Sci. 2025; 26(4).

PMID: 40003981 PMC: 11855872. DOI: 10.3390/ijms26041515.


Recent developments and future directions in point-of-care next-generation CRISPR-based rapid diagnosis.

Hassan Y, Mohamed A, Hassan Y, El-Sayed W Clin Exp Med. 2025; 25(1):33.

PMID: 39789283 PMC: 11717804. DOI: 10.1007/s10238-024-01540-8.


CRISPR/Cas: An Emerging Toolbox for Engineering Virus Resistance in Plants.

Zhan X, Zhang F, Li N, Xu K, Wang X, Gao S Plants (Basel). 2024; 13(23).

PMID: 39683106 PMC: 11644689. DOI: 10.3390/plants13233313.


Engineering stimuli-responsive CRISPR-Cas systems for versatile biosensing.

Cao L, Chen W, Kang W, Lei C, Nie Z Anal Bioanal Chem. 2024; .

PMID: 39601843 DOI: 10.1007/s00216-024-05678-y.


References
1.
Pickar-Oliver A, Gersbach C . The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019; 20(8):490-507. PMC: 7079207. DOI: 10.1038/s41580-019-0131-5. View

2.
Kushawah G, Hernandez-Huertas L, Abugattas-Nunez Del Prado J, Martinez-Morales J, DeVore M, Hassan H . CRISPR-Cas13d Induces Efficient mRNA Knockdown in Animal Embryos. Dev Cell. 2020; 54(6):805-817.e7. DOI: 10.1016/j.devcel.2020.07.013. View

3.
Buchman A, Brogan D, Sun R, Yang T, Hsu P, Akbari O . Programmable RNA Targeting Using CasRx in Flies. CRISPR J. 2020; 3(3):164-176. PMC: 7307691. DOI: 10.1089/crispr.2020.0018. View

4.
Kannan S, Altae-Tran H, Jin X, Madigan V, Oshiro R, Makarova K . Compact RNA editors with small Cas13 proteins. Nat Biotechnol. 2021; 40(2):194-197. PMC: 8929162. DOI: 10.1038/s41587-021-01030-2. View

5.
Du M, Jillette N, Zhu J, Li S, Cheng A . CRISPR artificial splicing factors. Nat Commun. 2020; 11(1):2973. PMC: 7293279. DOI: 10.1038/s41467-020-16806-4. View