» Articles » PMID: 31723604

SpCas9 Activity Prediction by DeepSpCas9, a Deep Learning-based Model with High Generalization Performance

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2019 Nov 15
PMID 31723604
Citations 96
Authors
Affiliations
Soon will be listed here.
Abstract

We evaluated SpCas9 activities at 12,832 target sequences using a high-throughput approach based on a human cell library containing single-guide RNA-encoding and target sequence pairs. Deep learning-based training on this large dataset of SpCas9-induced indel frequencies led to the development of a SpCas9 activity-predicting model named DeepSpCas9. When tested against independently generated datasets (our own and those published by other groups), DeepSpCas9 showed high generalization performance. DeepSpCas9 is available at http://deepcrispr.info/DeepSpCas9.

Citing Articles

Engineering Base Changes and Epitope-Tagged Alleles in Mice Using Cas9 RNA-Guided Nuclease.

Gertsenstein M, Lintott L, Nutter L Curr Protoc. 2025; 5(2):e70109.

PMID: 39999224 PMC: 11856344. DOI: 10.1002/cpz1.70109.


Transitioning from wet lab to artificial intelligence: a systematic review of AI predictors in CRISPR.

Abbasi A, Asim M, Dengel A J Transl Med. 2025; 23(1):153.

PMID: 39905452 PMC: 11796103. DOI: 10.1186/s12967-024-06013-w.


Appraisal of CRISPR Technology as an Innovative Screening to Therapeutic Toolkit for Genetic Disorders.

Shahid A, Zahra A, Aslam S, Shamim A, Ali W, Aslam B Mol Biotechnol. 2025; .

PMID: 39894889 DOI: 10.1007/s12033-025-01374-z.


DTMP-prime: A deep transformer-based model for predicting prime editing efficiency and PegRNA activity.

Alipanahi R, Safari L, Khanteymoori A Mol Ther Nucleic Acids. 2024; 35(4):102370.

PMID: 39654539 PMC: 11626815. DOI: 10.1016/j.omtn.2024.102370.


Structure-optimized sgRNA selection with PlatinumCRISPr for efficient Cas9 generation of knockouts.

Haussmann I, Dix T, McQuarrie D, Dezi V, Hans A, Arnold R Genome Res. 2024; 34(12):2279-2292.

PMID: 39626969 PMC: 11694751. DOI: 10.1101/gr.279479.124.


References
1.
Vidigal J, Ventura A . Rapid and efficient one-step generation of paired gRNA CRISPR-Cas9 libraries. Nat Commun. 2015; 6:8083. PMC: 4544769. DOI: 10.1038/ncomms9083. View

2.
Du D, Roguev A, Gordon D, Chen M, Chen S, Shales M . Genetic interaction mapping in mammalian cells using CRISPR interference. Nat Methods. 2017; 14(6):577-580. PMC: 5584685. DOI: 10.1038/nmeth.4286. View

3.
Hwang W, Fu Y, Reyon D, Maeder M, Tsai S, Sander J . Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013; 31(3):227-9. PMC: 3686313. DOI: 10.1038/nbt.2501. View

4.
Labuhn M, Adams F, Ng M, Knoess S, Schambach A, Charpentier E . Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications. Nucleic Acids Res. 2017; 46(3):1375-1385. PMC: 5814880. DOI: 10.1093/nar/gkx1268. View

5.
Xu H, Xiao T, Chen C, Li W, Meyer C, Wu Q . Sequence determinants of improved CRISPR sgRNA design. Genome Res. 2015; 25(8):1147-57. PMC: 4509999. DOI: 10.1101/gr.191452.115. View