» Articles » PMID: 35301732

Novel Transient Cytoplasmic Rings Stabilize Assembling Bacterial Flagellar Motors

Overview
Journal EMBO J
Date 2022 Mar 18
PMID 35301732
Authors
Affiliations
Soon will be listed here.
Abstract

The process by which bacterial cells build their intricate flagellar motility apparatuses has long fascinated scientists. Our understanding of this process comes mainly from studies of purified flagella from two species, Escherichia coli and Salmonella enterica. Here, we used electron cryo-tomography (cryo-ET) to image the assembly of the flagellar motor in situ in diverse Proteobacteria: Hylemonella gracilis, Helicobacter pylori, Campylobacter jejuni, Pseudomonas aeruginosa, Pseudomonas fluorescens, and Shewanella oneidensis. Our results reveal the in situ structures of flagellar intermediates, beginning with the earliest flagellar type III secretion system core complex (fT3SScc) and MS-ring. In high-torque motors of Beta-, Gamma-, and Epsilon-proteobacteria, we discovered novel cytoplasmic rings that interact with the cytoplasmic torque ring formed by FliG. These rings, associated with the MS-ring, assemble very early and persist until the stators are recruited into their periplasmic ring; in their absence the stator ring does not assemble. By imaging mutants in Helicobacter pylori, we found that the fT3SScc proteins FliO and FliQ are required for the assembly of these novel cytoplasmic rings. Our results show that rather than a simple accretion of components, flagellar motor assembly is a dynamic process in which accessory components interact transiently to assist in building the complex nanomachine.

Citing Articles

Multiple Chaperone DnaK-FliC Flagellin Interactions are Required for Pseudomonas aeruginosa Flagellum Assembly and Indicate a New Function for DnaK.

Molinari G, Ribeiro S, Muller K, Mayer B, Rohde M, Arce-Rodriguez A Microb Biotechnol. 2025; 18(2):e70096.

PMID: 39937155 PMC: 11816700. DOI: 10.1111/1751-7915.70096.


Helicobacter pylori and gastric cancer: mechanisms and new perspectives.

Duan Y, Xu Y, Dou Y, Xu D J Hematol Oncol. 2025; 18(1):10.

PMID: 39849657 PMC: 11756206. DOI: 10.1186/s13045-024-01654-2.


CryoEM structures reveal how the bacterial flagellum rotates and switches direction.

Singh P, Sharma P, Afanzar O, Goldfarb M, Maklashina E, Eisenbach M Nat Microbiol. 2024; 9(5):1271-1281.

PMID: 38632342 PMC: 11087270. DOI: 10.1038/s41564-024-01674-1.


Ring formation by fusion protein composed of FliF and FliG, MS-ring and C-ring component of bacterial flagellar motor in membrane.

Takahashi K, Nishikino T, Kajino H, Kojima S, Uchihashi T, Homma M Biophys Physicobiol. 2024; 20(2):e200028.

PMID: 38496245 PMC: 10941966. DOI: 10.2142/biophysico.bppb-v20.0028.


Structure and Assembly of the Flagellar Motor by Cryo-Electron Tomography.

Kaplan M, Yao Q, Jensen G Int J Mol Sci. 2023; 24(9).

PMID: 37176000 PMC: 10179241. DOI: 10.3390/ijms24098292.


References
1.
Boyd C, Smith T, El-Kirat-Chatel S, Newell P, Dufrene Y, OToole G . Structural features of the Pseudomonas fluorescens biofilm adhesin LapA required for LapG-dependent cleavage, biofilm formation, and cell surface localization. J Bacteriol. 2014; 196(15):2775-88. PMC: 4135675. DOI: 10.1128/JB.01629-14. View

2.
Thormann K, Paulick A . Tuning the flagellar motor. Microbiology (Reading). 2010; 156(Pt 5):1275-1283. DOI: 10.1099/mic.0.029595-0. View

3.
Fukumura T, Makino F, Dietsche T, Kinoshita M, Kato T, Wagner S . Assembly and stoichiometry of the core structure of the bacterial flagellar type III export gate complex. PLoS Biol. 2017; 15(8):e2002281. PMC: 5542437. DOI: 10.1371/journal.pbio.2002281. View

4.
Chreifi G, Chen S, Metskas L, Kaplan M, Jensen G . Rapid tilt-series acquisition for electron cryotomography. J Struct Biol. 2019; 205(2):163-169. PMC: 6389375. DOI: 10.1016/j.jsb.2018.12.008. View

5.
Liu R, Ochman H . Stepwise formation of the bacterial flagellar system. Proc Natl Acad Sci U S A. 2007; 104(17):7116-21. PMC: 1852327. DOI: 10.1073/pnas.0700266104. View