» Articles » PMID: 30648971

The Presence and Absence of Periplasmic Rings in Bacterial Flagellar Motors Correlates with Stator Type

Overview
Journal Elife
Specialty Biology
Date 2019 Jan 17
PMID 30648971
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

The bacterial flagellar motor, a cell-envelope-embedded macromolecular machine that functions as a cellular propeller, exhibits significant structural variability between species. Different torque-generating stator modules allow motors to operate in different pH, salt or viscosity levels. How such diversity evolved is unknown. Here, we use electron cryo-tomography to determine the in situ macromolecular structures of three Gammaproteobacteria motors: , , and , providing the first views of intact motors with dual stator systems. Complementing our imaging with bioinformatics analysis, we find a correlation between the motor's stator system and its structural elaboration. Motors with a single H-driven stator have only the core periplasmic P- and L-rings; those with dual H-driven stators have an elaborated P-ring; and motors with Na or Na/H-driven stators have both their P- and L-rings embellished. Our results suggest an evolution of structural elaboration that may have enabled pathogenic bacteria to colonize higher-viscosity environments in animal hosts.

Citing Articles

Multiple Chaperone DnaK-FliC Flagellin Interactions are Required for Pseudomonas aeruginosa Flagellum Assembly and Indicate a New Function for DnaK.

Molinari G, Ribeiro S, Muller K, Mayer B, Rohde M, Arce-Rodriguez A Microb Biotechnol. 2025; 18(2):e70096.

PMID: 39937155 PMC: 11816700. DOI: 10.1111/1751-7915.70096.


Tetrameric PilZ protein stabilizes stator ring in complex flagellar motor and is required for motility in .

Chen Y, Tachiyama S, Li Y, Feng X, Zhao H, Wu Y Proc Natl Acad Sci U S A. 2025; 122(1):e2412594121.

PMID: 39793078 PMC: 11725899. DOI: 10.1073/pnas.2412594121.


Rotation of the Fla2 flagella of Cereibacter sphaeroides requires the periplasmic proteins MotK and MotE that interact with the flagellar stator protein MotB2.

Velez-Gonzalez F, Marcos-Vilchis A, Vega-Baray B, Dreyfus G, Poggio S, Camarena L PLoS One. 2024; 19(3):e0298028.

PMID: 38507361 PMC: 10954123. DOI: 10.1371/journal.pone.0298028.


How cells with diverse stator composition collectively swarm.

de Anda J, Kuchma S, Webster S, Boromand A, Lewis K, Lee C mBio. 2024; 15(4):e0332223.

PMID: 38426789 PMC: 11005332. DOI: 10.1128/mbio.03322-23.


Structure and Assembly of the Flagellar Motor by Cryo-Electron Tomography.

Kaplan M, Yao Q, Jensen G Int J Mol Sci. 2023; 24(9).

PMID: 37176000 PMC: 10179241. DOI: 10.3390/ijms24098292.


References
1.
Oikonomou C, Jensen G . A new view into prokaryotic cell biology from electron cryotomography. Nat Rev Microbiol. 2017; 15(2):128. DOI: 10.1038/nrmicro.2016.195. View

2.
Stock D, Namba K, Lee L . Nanorotors and self-assembling macromolecular machines: the torque ring of the bacterial flagellar motor. Curr Opin Biotechnol. 2012; 23(4):545-54. DOI: 10.1016/j.copbio.2012.01.008. View

3.
Sowa Y, Berry R . Bacterial flagellar motor. Q Rev Biophys. 2008; 41(2):103-32. DOI: 10.1017/S0033583508004691. View

4.
Terahara N, Krulwich T, Ito M . Mutations alter the sodium versus proton use of a Bacillus clausii flagellar motor and confer dual ion use on Bacillus subtilis motors. Proc Natl Acad Sci U S A. 2008; 105(38):14359-64. PMC: 2567154. DOI: 10.1073/pnas.0802106105. View

5.
Terashima H, Kawamoto A, Morimoto Y, Imada K, Minamino T . Structural differences in the bacterial flagellar motor among bacterial species. Biophys Physicobiol. 2018; 14:191-198. PMC: 5774414. DOI: 10.2142/biophysico.14.0_191. View