6.
Hartl F, Bracher A, Hayer-Hartl M
. Molecular chaperones in protein folding and proteostasis. Nature. 2011; 475(7356):324-32.
DOI: 10.1038/nature10317.
View
7.
Pankratz D, Oswaldo Gomez N, Nielsen A, Mustafayeva A, Gur M, Arce-Rodriguez F
. An expanded CRISPR-Cas9-assisted recombineering toolkit for engineering genetically intractable Pseudomonas aeruginosa isolates. Nat Protoc. 2023; 18(11):3253-3288.
DOI: 10.1038/s41596-023-00882-z.
View
8.
Mayer M, Gierasch L
. Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones. J Biol Chem. 2018; 294(6):2085-2097.
PMC: 6369304.
DOI: 10.1074/jbc.REV118.002810.
View
9.
Slepenkov S, Witt S
. The unfolding story of the Escherichia coli Hsp70 DnaK: is DnaK a holdase or an unfoldase?. Mol Microbiol. 2002; 45(5):1197-206.
DOI: 10.1046/j.1365-2958.2002.03093.x.
View
10.
Nedeljkovic M, Sastre D, Sundberg E
. Bacterial Flagellar Filament: A Supramolecular Multifunctional Nanostructure. Int J Mol Sci. 2021; 22(14).
PMC: 8306008.
DOI: 10.3390/ijms22147521.
View
11.
Borrero-de Acuna J, Molinari G, Rohde M, Dammeyer T, Wissing J, Jansch L
. A Periplasmic Complex of the Nitrite Reductase NirS, the Chaperone DnaK, and the Flagellum Protein FliC Is Essential for Flagellum Assembly and Motility in Pseudomonas aeruginosa. J Bacteriol. 2015; 197(19):3066-75.
PMC: 4560289.
DOI: 10.1128/JB.00415-15.
View
12.
Lu H, Zhou Q, He J, Jiang Z, Peng C, Tong R
. Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials. Signal Transduct Target Ther. 2020; 5(1):213.
PMC: 7511340.
DOI: 10.1038/s41392-020-00315-3.
View
13.
Mazal H, Iljina M, Barak Y, Elad N, Rosenzweig R, Goloubinoff P
. Tunable microsecond dynamics of an allosteric switch regulate the activity of a AAA+ disaggregation machine. Nat Commun. 2019; 10(1):1438.
PMC: 6440998.
DOI: 10.1038/s41467-019-09474-6.
View
14.
Kaplan M, Ghosal D, Subramanian P, Oikonomou C, Kjaer A, Pirbadian S
. The presence and absence of periplasmic rings in bacterial flagellar motors correlates with stator type. Elife. 2019; 8.
PMC: 6375700.
DOI: 10.7554/eLife.43487.
View
15.
Bertelsen E, Chang L, Gestwicki J, Zuiderweg E
. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc Natl Acad Sci U S A. 2009; 106(21):8471-6.
PMC: 2689011.
DOI: 10.1073/pnas.0903503106.
View
16.
Sharma S, Christen P, Goloubinoff P
. Disaggregating chaperones: an unfolding story. Curr Protein Pept Sci. 2009; 10(5):432-46.
DOI: 10.2174/138920309789351930.
View
17.
Fernandez-Fernandez M, Valpuesta J
. Hsp70 chaperone: a master player in protein homeostasis. F1000Res. 2018; 7.
PMC: 6148205.
DOI: 10.12688/f1000research.15528.1.
View
18.
Hayer-Hartl M, Bracher A, Hartl F
. The GroEL-GroES Chaperonin Machine: A Nano-Cage for Protein Folding. Trends Biochem Sci. 2015; 41(1):62-76.
DOI: 10.1016/j.tibs.2015.07.009.
View
19.
Martinez-Garcia E, de Lorenzo V
. Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ Microbiol. 2011; 13(10):2702-16.
DOI: 10.1111/j.1462-2920.2011.02538.x.
View
20.
Wilks J, Slonczewski J
. pH of the cytoplasm and periplasm of Escherichia coli: rapid measurement by green fluorescent protein fluorimetry. J Bacteriol. 2007; 189(15):5601-7.
PMC: 1951819.
DOI: 10.1128/JB.00615-07.
View