» Articles » PMID: 32895555

Molecular Mechanism for Rotational Switching of the Bacterial Flagellar Motor

Overview
Date 2020 Sep 8
PMID 32895555
Citations 53
Authors
Affiliations
Soon will be listed here.
Abstract

The bacterial flagellar motor can rotate in counterclockwise (CCW) or clockwise (CW) senses, and transitions are controlled by the phosphorylated form of the response regulator CheY (CheY-P). To dissect the mechanism underlying flagellar rotational switching, we use Borrelia burgdorferi as a model system to determine high-resolution in situ motor structures in cheX and cheY3 mutants, in which motors are locked in either CCW or CW rotation. The structures showed that CheY3-P interacts directly with a switch protein, FliM, inducing a major remodeling of another switch protein, FliG2, and altering its interaction with the torque generator. Our findings lead to a model in which the torque generator rotates in response to an inward flow of H driven by the proton motive force, and conformational changes in FliG2 driven by CheY3-P allow the switch complex to interact with opposite sides of the rotating torque generator, facilitating rotational switching.

Citing Articles

Sodium-Dependent Conformational Change in Flagellar Stator Protein MotS from .

Takekawa N, Yamaguchi A, Nishiuchi K, Uehori M, Kinoshita M, Minamino T Biomolecules. 2025; 15(2).

PMID: 40001605 PMC: 11853200. DOI: 10.3390/biom15020302.


Regulatory Role of a Hydrophobic Core in the FliG C-Terminal Domain in the Rotary Direction of a Flagellar Motor.

Nishikino T, Hatano A, Kojima S, Homma M Biomolecules. 2025; 15(2).

PMID: 40001515 PMC: 11853002. DOI: 10.3390/biom15020212.


Ultrasensitivity without conformational spread: A mechanical origin for non-equilibrium cooperativity in the bacterial flagellar motor.

Mattingly H, Tu Y ArXiv. 2025; .

PMID: 39975436 PMC: 11838781.


Tetrameric PilZ protein stabilizes stator ring in complex flagellar motor and is required for motility in .

Chen Y, Tachiyama S, Li Y, Feng X, Zhao H, Wu Y Proc Natl Acad Sci U S A. 2025; 122(1):e2412594121.

PMID: 39793078 PMC: 11725899. DOI: 10.1073/pnas.2412594121.


Structural insight into sodium ion pathway in the bacterial flagellar stator from marine .

Nishikino T, Takekawa N, Kishikawa J, Hirose M, Kojima S, Homma M Proc Natl Acad Sci U S A. 2025; 122(1):e2415713122.

PMID: 39793043 PMC: 11725901. DOI: 10.1073/pnas.2415713122.


References
1.
Berg H . The rotary motor of bacterial flagella. Annu Rev Biochem. 2002; 72:19-54. DOI: 10.1146/annurev.biochem.72.121801.161737. View

2.
Chevance F, Hughes K . Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol. 2008; 6(6):455-65. PMC: 5963726. DOI: 10.1038/nrmicro1887. View

3.
Minamino T, Kinoshita M, Namba K . Directional Switching Mechanism of the Bacterial Flagellar Motor. Comput Struct Biotechnol J. 2019; 17:1075-1081. PMC: 6700473. DOI: 10.1016/j.csbj.2019.07.020. View

4.
Terashima H, Kojima S, Homma M . Flagellar motility in bacteria structure and function of flagellar motor. Int Rev Cell Mol Biol. 2008; 270:39-85. DOI: 10.1016/S1937-6448(08)01402-0. View

5.
Wadhams G, Armitage J . Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol. 2004; 5(12):1024-37. DOI: 10.1038/nrm1524. View