» Articles » PMID: 34845227

Compressive Stress-mediated P38 Activation Required for ERα + phenotype in Breast Cancer

Abstract

Breast cancer is now globally the most frequent cancer and leading cause of women's death. Two thirds of breast cancers express the luminal estrogen receptor-positive (ERα + ) phenotype that is initially responsive to antihormonal therapies, but drug resistance emerges. A major barrier to the understanding of the ERα-pathway biology and therapeutic discoveries is the restricted repertoire of luminal ERα + breast cancer models. The ERα + phenotype is not stable in cultured cells for reasons not fully understood. We examine 400 patient-derived breast epithelial and breast cancer explant cultures (PDECs) grown in various three-dimensional matrix scaffolds, finding that ERα is primarily regulated by the matrix stiffness. Matrix stiffness upregulates the ERα signaling via stress-mediated p38 activation and H3K27me3-mediated epigenetic regulation. The finding that the matrix stiffness is a central cue to the ERα phenotype reveals a mechanobiological component in breast tissue hormonal signaling and enables the development of novel therapeutic interventions. Subject terms: ER-positive (ER + ), breast cancer, ex vivo model, preclinical model, PDEC, stiffness, p38 SAPK.

Citing Articles

Patient-derived tumor explant models of tumor immune microenvironment reveal distinct and reproducible immunotherapy responses.

Turpin R, Peltonen K, Rannikko J, Liu R, Kumari A, Nicorici D Oncoimmunology. 2025; 14(1):2466305.

PMID: 39960413 PMC: 11834457. DOI: 10.1080/2162402X.2025.2466305.


Patient-derived response estimates from zero-passage organoids of luminal breast cancer.

Przanowska R, Labban N, Przanowski P, Hawes R, Atkins K, Showalter S Breast Cancer Res. 2024; 26(1):192.

PMID: 39741344 PMC: 11687200. DOI: 10.1186/s13058-024-01931-5.


Invasion/chemotaxis- and extravasation-chip models for breast cancer bone metastasis.

Firatligil-Yildirir B, Bati-Ayaz G, Nonappa , Pesen-Okvur D, Yalcin-Ozuysal O PLoS One. 2024; 19(10):e0309285.

PMID: 39418263 PMC: 11486417. DOI: 10.1371/journal.pone.0309285.


A YAP-centered mechanotransduction loop drives collective breast cancer cell invasion.

Khalil A, Smits D, Haughton P, Koorman T, Jansen K, Verhagen M Nat Commun. 2024; 15(1):4866.

PMID: 38849373 PMC: 11161601. DOI: 10.1038/s41467-024-49230-z.


A novel preclinical model of the normal human breast.

Wilby A, Cabral S, Zoghi N, Howell S, Farnie G, Harrison H J Mammary Gland Biol Neoplasia. 2024; 29(1):9.

PMID: 38695983 PMC: 11065935. DOI: 10.1007/s10911-024-09562-4.


References
1.
Powley I, Patel M, Miles G, Pringle H, Howells L, Thomas A . Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery. Br J Cancer. 2020; 122(6):735-744. PMC: 7078311. DOI: 10.1038/s41416-019-0672-6. View

2.
Cheang M, Chia S, Voduc D, Gao D, Leung S, Snider J . Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009; 101(10):736-50. PMC: 2684553. DOI: 10.1093/jnci/djp082. View

3.
Franco H, Nagari A, Malladi V, Li W, Xi Y, Richardson D . Enhancer transcription reveals subtype-specific gene expression programs controlling breast cancer pathogenesis. Genome Res. 2017; 28(2):159-170. PMC: 5793780. DOI: 10.1101/gr.226019.117. View

4.
Danilov A, Neupane D, Nagaraja A, Feofanova E, Humphries L, DiRenzo J . DeltaNp63alpha-mediated induction of epidermal growth factor receptor promotes pancreatic cancer cell growth and chemoresistance. PLoS One. 2011; 6(10):e26815. PMC: 3203907. DOI: 10.1371/journal.pone.0026815. View

5.
Kangaspeska S, Hultsch S, Jaiswal A, Edgren H, Mpindi J, Eldfors S . Systematic drug screening reveals specific vulnerabilities and co-resistance patterns in endocrine-resistant breast cancer. BMC Cancer. 2016; 16:378. PMC: 4932681. DOI: 10.1186/s12885-016-2452-5. View