» Articles » PMID: 33990598

Hierarchical Progressive Learning of Cell Identities in Single-cell Data

Overview
Journal Nat Commun
Specialty Biology
Date 2021 May 15
PMID 33990598
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Supervised methods are increasingly used to identify cell populations in single-cell data. Yet, current methods are limited in their ability to learn from multiple datasets simultaneously, are hampered by the annotation of datasets at different resolutions, and do not preserve annotations when retrained on new datasets. The latter point is especially important as researchers cannot rely on downstream analysis performed using earlier versions of the dataset. Here, we present scHPL, a hierarchical progressive learning method which allows continuous learning from single-cell data by leveraging the different resolutions of annotations across multiple datasets to learn and continuously update a classification tree. We evaluate the classification and tree learning performance using simulated as well as real datasets and show that scHPL can successfully learn known cellular hierarchies from multiple datasets while preserving the original annotations. scHPL is available at https://github.com/lcmmichielsen/scHPL .

Citing Articles

Considerations for building and using integrated single-cell atlases.

Hrovatin K, Sikkema L, Shitov V, Heimberg G, Shulman M, Oliver A Nat Methods. 2024; 22(1):41-57.

PMID: 39672979 DOI: 10.1038/s41592-024-02532-y.


Detecting global and local hierarchical structures in cell-cell communication using CrossChat.

Wang X, Almet A, Nie Q Nat Commun. 2024; 15(1):10542.

PMID: 39627184 PMC: 11615294. DOI: 10.1038/s41467-024-54821-x.


Immune landscape of oncohistone-mutant gliomas reveals diverse myeloid populations and tumor-promoting function.

Andrade A, Annett A, Karimi E, Topouza D, Rezanejad M, Liu Y Nat Commun. 2024; 15(1):7769.

PMID: 39237515 PMC: 11377583. DOI: 10.1038/s41467-024-52096-w.


A gene regulatory network-aware graph learning method for cell identity annotation in single-cell RNA-seq data.

Zhao M, Li J, Liu X, Ma K, Tang J, Guo F Genome Res. 2024; 34(7):1036-1051.

PMID: 39134412 PMC: 11368180. DOI: 10.1101/gr.278439.123.


Single-cell omics: experimental workflow, data analyses and applications.

Sun F, Li H, Sun D, Fu S, Gu L, Shao X Sci China Life Sci. 2024; 68(1):5-102.

PMID: 39060615 DOI: 10.1007/s11427-023-2561-0.


References
1.
Zeisel A, Munoz-Manchado A, Codeluppi S, Lonnerberg P, La Manno G, Jureus A . Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015; 347(6226):1138-42. DOI: 10.1126/science.aaa1934. View

2.
Saunders A, Macosko E, Wysoker A, Goldman M, Krienen F, de Rivera H . Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain. Cell. 2018; 174(4):1015-1030.e16. PMC: 6447408. DOI: 10.1016/j.cell.2018.07.028. View

3.
Zeisel A, Hochgerner H, Lonnerberg P, Johnsson A, Memic F, van der Zwan J . Molecular Architecture of the Mouse Nervous System. Cell. 2018; 174(4):999-1014.e22. PMC: 6086934. DOI: 10.1016/j.cell.2018.06.021. View

4.
Cao Z, Wei L, Lu S, Yang D, Gao G . Searching large-scale scRNA-seq databases via unbiased cell embedding with Cell BLAST. Nat Commun. 2020; 11(1):3458. PMC: 7351785. DOI: 10.1038/s41467-020-17281-7. View

5.
Rosenberg A, Roco C, Muscat R, Kuchina A, Sample P, Yao Z . Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science. 2018; 360(6385):176-182. PMC: 7643870. DOI: 10.1126/science.aam8999. View