» Articles » PMID: 28899397

Splatter: Simulation of Single-cell RNA Sequencing Data

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2017 Sep 14
PMID 28899397
Citations 360
Authors
Affiliations
Soon will be listed here.
Abstract

As single-cell RNA sequencing (scRNA-seq) technologies have rapidly developed, so have analysis methods. Many methods have been tested, developed, and validated using simulated datasets. Unfortunately, current simulations are often poorly documented, their similarity to real data is not demonstrated, or reproducible code is not available. Here, we present the Splatter Bioconductor package for simple, reproducible, and well-documented simulation of scRNA-seq data. Splatter provides an interface to multiple simulation methods including Splat, our own simulation, based on a gamma-Poisson distribution. Splat can simulate single populations of cells, populations with multiple cell types, or differentiation paths.

Citing Articles

Feature selection methods affect the performance of scRNA-seq data integration and querying.

Zappia L, Richter S, Ramirez-Suastegui C, Kfuri-Rubens R, Vornholz L, Wang W Nat Methods. 2025; .

PMID: 40082610 DOI: 10.1038/s41592-025-02624-3.


Dissecting tumor cell programs through group biology estimation in clinical single-cell transcriptomics.

Johri S, Bi K, Titchen B, Fu J, Conway J, Crowdis J Nat Commun. 2025; 16(1):2090.

PMID: 40025015 PMC: 11873288. DOI: 10.1038/s41467-025-57377-6.


cfDiffusion: diffusion-based efficient generation of high quality scRNA-seq data with classifier-free guidance.

Zhang T, Zhao Z, Ren J, Zhang Z, Zhang H, Wang G Brief Bioinform. 2025; 26(1).

PMID: 39987461 PMC: 11846686. DOI: 10.1093/bib/bbaf071.


Interpretable single-cell factor decomposition using sciRED.

Pouyabahar D, Andrews T, Bader G Nat Commun. 2025; 16(1):1878.

PMID: 39987196 PMC: 11846867. DOI: 10.1038/s41467-025-57157-2.


scRDiT: Generating Single-cell RNA-seq Data by Diffusion Transformers and Accelerating Sampling.

Dong S, Cui Z, Liu D, Lei J Interdiscip Sci. 2025; .

PMID: 39982678 DOI: 10.1007/s12539-025-00688-5.


References
1.
Camp J, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Brauninger M . Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A. 2015; 112(51):15672-7. PMC: 4697386. DOI: 10.1073/pnas.1520760112. View

2.
Liao Y, Smyth G, Shi W . featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2013; 30(7):923-30. DOI: 10.1093/bioinformatics/btt656. View

3.
Tung P, Blischak J, Hsiao C, Knowles D, Burnett J, Pritchard J . Batch effects and the effective design of single-cell gene expression studies. Sci Rep. 2017; 7:39921. PMC: 5206706. DOI: 10.1038/srep39921. View

4.
Zeisel A, Munoz-Manchado A, Codeluppi S, Lonnerberg P, La Manno G, Jureus A . Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015; 347(6226):1138-42. DOI: 10.1126/science.aaa1934. View

5.
McCarthy D, Chen Y, Smyth G . Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012; 40(10):4288-97. PMC: 3378882. DOI: 10.1093/nar/gks042. View