» Articles » PMID: 30586455

Single-nucleus and Single-cell Transcriptomes Compared in Matched Cortical Cell Types

Abstract

Transcriptomic profiling of complex tissues by single-nucleus RNA-sequencing (snRNA-seq) affords some advantages over single-cell RNA-sequencing (scRNA-seq). snRNA-seq provides less biased cellular coverage, does not appear to suffer cell isolation-based transcriptional artifacts, and can be applied to archived frozen specimens. We used well-matched snRNA-seq and scRNA-seq datasets from mouse visual cortex to compare cell type detection. Although more transcripts are detected in individual whole cells (~11,000 genes) than nuclei (~7,000 genes), we demonstrate that closely related neuronal cell types can be similarly discriminated with both methods if intronic sequences are included in snRNA-seq analysis. We estimate that the nuclear proportion of total cellular mRNA varies from 20% to over 50% for large and small pyramidal neurons, respectively. Together, these results illustrate the high information content of nuclear RNA for characterization of cellular diversity in brain tissues.

Citing Articles

Mouse-to-human modeling of microglia single-nuclei transcriptomics identifies immune signaling pathways and potential therapeutic candidates associated with Alzheimer's disease.

Bergendorf A, Park J, Ball B, Brubaker D bioRxiv. 2025; .

PMID: 39975195 PMC: 11839086. DOI: 10.1101/2025.02.07.637100.


A versatile and efficient method to isolate nuclei from low-input cryopreserved tissues for single-nuclei transcriptomics.

Segovia C, Desrosiers V, Khadangi F, Robitaille K, Armero V, DAstous M Sci Rep. 2025; 15(1):5581.

PMID: 39955438 PMC: 11829965. DOI: 10.1038/s41598-025-90070-8.


Deconvolving Bulk Transcriptomics Samples to Obtain Cell Type Proportion Estimates.

Menon V Methods Mol Biol. 2025; 2880:309-318.

PMID: 39900766 DOI: 10.1007/978-1-0716-4276-4_15.


Single-cell chromatin accessibility landscape profiling reveals the diversity of epigenetic regulation in the rat nervous system.

Ma P, Duan S, Ma W, Deng Q, Yu Y, Gao P Sci Data. 2025; 12(1):140.

PMID: 39856121 PMC: 11761061. DOI: 10.1038/s41597-025-04432-y.


Comparative evaluation of ACetic - MEthanol high salt dissociation approach for single-cell transcriptomics of frozen human tissues.

Utkina M, Shcherbakova A, Deviatiiarov R, Ryabova A, Loguinova M, Trofimov V Front Cell Dev Biol. 2025; 12():1469955.

PMID: 39839668 PMC: 11748064. DOI: 10.3389/fcell.2024.1469955.


References
1.
Regev A, Teichmann S, Lander E, Amit I, Benoist C, Birney E . The Human Cell Atlas. Elife. 2017; 6. PMC: 5762154. DOI: 10.7554/eLife.27041. View

2.
Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R . Software for computing and annotating genomic ranges. PLoS Comput Biol. 2013; 9(8):e1003118. PMC: 3738458. DOI: 10.1371/journal.pcbi.1003118. View

3.
Macosko E, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M . Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015; 161(5):1202-1214. PMC: 4481139. DOI: 10.1016/j.cell.2015.05.002. View

4.
Lein E, Hawrylycz M, Ao N, Ayres M, Bensinger A, Bernard A . Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2006; 445(7124):168-76. DOI: 10.1038/nature05453. View

5.
Lamprecht M, Sabatini D, Carpenter A . CellProfiler: free, versatile software for automated biological image analysis. Biotechniques. 2007; 42(1):71-5. DOI: 10.2144/000112257. View