» Articles » PMID: 33986546

Quantitative Profiling of Pseudouridylation Dynamics in Native RNAs with Nanopore Sequencing

Overview
Journal Nat Biotechnol
Specialty Biotechnology
Date 2021 May 14
PMID 33986546
Citations 129
Authors
Affiliations
Soon will be listed here.
Abstract

Nanopore RNA sequencing shows promise as a method for discriminating and identifying different RNA modifications in native RNA. Expanding on the ability of nanopore sequencing to detect N-methyladenosine, we show that other modifications, in particular pseudouridine (Ψ) and 2'-O-methylation (Nm), also result in characteristic base-calling 'error' signatures in the nanopore data. Focusing on Ψ modification sites, we detected known and uncovered previously unreported Ψ sites in mRNAs, non-coding RNAs and rRNAs, including a Pus4-dependent Ψ modification in yeast mitochondrial rRNA. To explore the dynamics of pseudouridylation, we treated yeast cells with oxidative, cold and heat stresses and detected heat-sensitive Ψ-modified sites in small nuclear RNAs, small nucleolar RNAs and mRNAs. Finally, we developed a software, nanoRMS, that estimates per-site modification stoichiometries by identifying single-molecule reads with altered current intensity and trace profiles. This work demonstrates that Nm and Ψ RNA modifications can be detected in cellular RNAs and that their modification stoichiometry can be quantified by nanopore sequencing of native RNA.

Citing Articles

Toward the use of nanopore RNA sequencing technologies in the clinic: challenges and opportunities.

Katopodi X, Begik O, Novoa E Nucleic Acids Res. 2025; 53(5).

PMID: 40057374 PMC: 11890063. DOI: 10.1093/nar/gkaf128.


Small nucleolar RNAs: the hidden precursors of cancer ribosomes.

Faucher-Giguere L, de Preval B, Rivera A, Scott M, Elela S Philos Trans R Soc Lond B Biol Sci. 2025; 380(1921):20230376.

PMID: 40045787 PMC: 11883439. DOI: 10.1098/rstb.2023.0376.


De novo basecalling of RNA modifications at single molecule and nucleotide resolution.

Cruciani S, Delgado-Tejedor A, Pryszcz L, Medina R, Llovera L, Novoa E Genome Biol. 2025; 26(1):38.

PMID: 40001217 PMC: 11853310. DOI: 10.1186/s13059-025-03498-6.


Deciphering the pseudouridine nucleobase modification in human diseases: From molecular mechanisms to clinical perspectives.

Jia S, Yu X, Deng N, Zheng C, Ju M, Wang F Clin Transl Med. 2025; 15(1):e70190.

PMID: 39834094 PMC: 11746961. DOI: 10.1002/ctm2.70190.


Training data diversity enhances the basecalling of novel RNA modification-induced nanopore sequencing readouts.

Wang Z, Liu Z, Fang Y, Zhang H, Sun X, Hao N Nat Commun. 2025; 16(1):679.

PMID: 39814719 PMC: 11735843. DOI: 10.1038/s41467-025-55974-z.


References
1.
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S . Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012; 485(7397):201-6. DOI: 10.1038/nature11112. View

2.
Meyer K, Saletore Y, Zumbo P, Elemento O, Mason C, Jaffrey S . Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell. 2012; 149(7):1635-46. PMC: 3383396. DOI: 10.1016/j.cell.2012.05.003. View

3.
Carlile T, Rojas-Duran M, Zinshteyn B, Shin H, Bartoli K, Gilbert W . Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature. 2014; 515(7525):143-6. PMC: 4224642. DOI: 10.1038/nature13802. View

4.
Schwartz S, Bernstein D, Mumbach M, Jovanovic M, Herbst R, Leon-Ricardo B . Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell. 2014; 159(1):148-162. PMC: 4180118. DOI: 10.1016/j.cell.2014.08.028. View

5.
Lovejoy A, Riordan D, Brown P . Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS One. 2014; 9(10):e110799. PMC: 4212993. DOI: 10.1371/journal.pone.0110799. View