» Articles » PMID: 32906803

Insulator Based Dielectrophoresis: Micro, Nano, and Molecular Scale Biological Applications

Overview
Journal Sensors (Basel)
Publisher MDPI
Specialty Biotechnology
Date 2020 Sep 10
PMID 32906803
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Insulator based dielectrophoresis (iDEP) is becoming increasingly important in emerging biomolecular applications, including particle purification, fractionation, and separation. Compared to conventional electrode-based dielectrophoresis (eDEP) techniques, iDEP has been demonstrated to have a higher degree of selectivity of biological samples while also being less biologically intrusive. Over the past two decades, substantial technological advances have been made, enabling iDEP to be applied from micro, to nano and molecular scales. Soft particles, including cell organelles, viruses, proteins, and nucleic acids, have been manipulated using iDEP, enabling the exploration of subnanometer biological interactions. Recent investigations using this technique have demonstrated a wide range of applications, including biomarker screening, protein folding analysis, and molecular sensing. Here, we review current state-of-art research on iDEP systems and highlight potential future work.

Citing Articles

Dielectrophoretic capture and electrochemical enzyme-linked immunosorbent assay of single melanoma cells at an array of interlocked spiral bipolar electrodes.

Clark M, Moser H, Anand R ChemElectroChem. 2024; 11(15).

PMID: 39483376 PMC: 11526340. DOI: 10.1002/celc.202400182.


High-Throughput Continuous Free-Flow Dielectrophoretic Trapping of Micron-Scale Particles and Cells in Paper Using Localized Nonuniform Pore-Scale-Generated Paper-Based Electric Field Gradients.

Islam M, Jaiswal B, Gagnon Z Anal Chem. 2024; 96(3):1084-1092.

PMID: 38194698 PMC: 10809225. DOI: 10.1021/acs.analchem.3c03740.


Microfluidic Systems for Blood and Blood Cell Characterization.

Kim H, Zhbanov A, Yang S Biosensors (Basel). 2023; 13(1).

PMID: 36671848 PMC: 9856090. DOI: 10.3390/bios13010013.


Protein Albumin Manipulation and Electrical Quantification of Molecular Dielectrophoresis Responses for Biomedical Applications.

Abdul Nasir N, Deivasigamani R, Mohd Razip Wee M, Hamzah A, Zaid M, Rahim M Micromachines (Basel). 2022; 13(8).

PMID: 36014230 PMC: 9415755. DOI: 10.3390/mi13081308.


Comparing machine learning and deep learning regression frameworks for accurate prediction of dielectrophoretic force.

Ajala S, Jalajamony H, Nair M, Marimuthu P, Fernandez R Sci Rep. 2022; 12(1):11971.

PMID: 35831342 PMC: 9279499. DOI: 10.1038/s41598-022-16114-5.


References
1.
Paik S, Kim G, Chang S, Lee S, Jin D, Jeong K . Near-field sub-diffraction photolithography with an elastomeric photomask. Nat Commun. 2020; 11(1):805. PMC: 7010681. DOI: 10.1038/s41467-020-14439-1. View

2.
Shi R, Huang C, Zhang L, Amini A, Liu K, Shi Y . Three Dimensional Sculpturing of Vertical Nanowire Arrays by Conventional Photolithography. Sci Rep. 2016; 6:18886. PMC: 4700459. DOI: 10.1038/srep18886. View

3.
Maas S, Breakefield X, Weaver A . Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends Cell Biol. 2016; 27(3):172-188. PMC: 5318253. DOI: 10.1016/j.tcb.2016.11.003. View

4.
Thomas R, Mitchell P, Oreffo R, Morgan H, Green N . Image-based sorting and negative dielectrophoresis for high purity cell and particle separation. Electrophoresis. 2019; 40(20):2718-2727. DOI: 10.1002/elps.201800489. View

5.
Kikkeri K, Kerr B, Bertke A, Strobl J, Agah M . Passivated-electrode insulator-based dielectrophoretic separation of heterogeneous cell mixtures. J Sep Sci. 2020; 43(8):1576-1585. DOI: 10.1002/jssc.201900553. View