» Articles » PMID: 30558882

MyDEP: A New Computational Tool for Dielectric Modeling of Particles and Cells

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2018 Dec 19
PMID 30558882
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Dielectrophoresis (DEP) and electrorotation (ROT) are two electrokinetic phenomena exploiting nonuniform electric fields to exert a force or torque on biological particles suspended in liquid media. They are widely used in lab-on-chip devices for the manipulation, trapping, separation, and characterization of cells, microorganisms, and other particles. The DEP force and ROT torque depend on the respective polarizabilities of the particle and medium, which in turn depend on their dielectric properties and on the field frequency. In this work, we present a new software, MyDEP, which implements several particle models based on concentric shells with adjustable dielectric properties. This tool enables the study of the variation in DEP and ROT spectra according to different parameters, such as the field frequency and medium conductivity. Such predictions of particle behavior are very useful for choosing appropriate parameters in DEP experiments. The software also enables the study of the homogenized properties of spherical or ellipsoidal multishell particles and provides a database containing published cell properties. Equivalent electrical conductivity and relative permittivity of the cell alone and in suspension can be calculated. The software also offers the ability to create graphs of the evolution of the crossover frequencies with the electric field frequency. These graphs can be directly exported from the software.

Citing Articles

Light-Emitting Diode Array with Optical Linear Detector Enables High-Throughput Differential Single-Cell Dielectrophoretic Analysis.

Kovacs E, Arzang B, Salimi E, Butler M, Bridges G, Thomson D Sensors (Basel). 2025; 24(24.

PMID: 39771806 PMC: 11679556. DOI: 10.3390/s24248071.


Combined Dielectric-Optical Characterization of Single Cells Using Dielectrophoresis-Imaging Flow Cytometry.

Arzhang B, Lee J, Kovacs E, Butler M, Salimi E, Thomson D Biosensors (Basel). 2024; 14(12).

PMID: 39727842 PMC: 11674913. DOI: 10.3390/bios14120577.


When to Use Rectangular Waveforms in Dielectrophoresis Application to Increase Separation and Sorting Efficiency.

Boldt N, Weirauch L, Spath J, Kerst U, Birkholz M, Baune M Electrophoresis. 2024; 46(1-2):104-111.

PMID: 39607118 PMC: 11773296. DOI: 10.1002/elps.202400164.


Dielectric Signatures of Late Carcinoma Immune Cells Using MMTV-PyMT Mammary Carcinoma Models.

Oladokun R, Smith C, Eubank T, Srivastava S ACS Omega. 2024; 9(40):41378-41388.

PMID: 39398140 PMC: 11465564. DOI: 10.1021/acsomega.4c04210.


On-chip dielectrophoretic single-cell manipulation.

Tian Z, Wang X, Chen J Microsyst Nanoeng. 2024; 10(1):117.

PMID: 39187499 PMC: 11347631. DOI: 10.1038/s41378-024-00750-0.


References
1.
Reichle C, Schnelle T, Muller T, Leya T, Fuhr G . A new microsystem for automated electrorotation measurements using laser tweezers. Biochim Biophys Acta. 2000; 1459(1):218-29. DOI: 10.1016/s0005-2728(00)00150-x. View

2.
Jones T . Basic theory of dielectrophoresis and electrorotation. IEEE Eng Med Biol Mag. 2004; 22(6):33-42. DOI: 10.1109/memb.2003.1304999. View

3.
Zimmermann D, Kiesel M, Terpitz U, Zhou A, Reuss R, Kraus J . A combined patch-clamp and electrorotation study of the voltage- and frequency-dependent membrane capacitance caused by structurally dissimilar lipophilic anions. J Membr Biol. 2008; 221(2):107-21. PMC: 2755742. DOI: 10.1007/s00232-007-9090-4. View

4.
Henslee E, Sano M, Rojas A, Schmelz E, Davalos R . Selective concentration of human cancer cells using contactless dielectrophoresis. Electrophoresis. 2011; 32(18):2523-9. DOI: 10.1002/elps.201100081. View