» Articles » PMID: 35744480

Sub-100 Nm Nanoparticle Upconcentration in Flow by Dielectrophoretic Forces

Overview
Publisher MDPI
Date 2022 Jun 24
PMID 35744480
Authors
Affiliations
Soon will be listed here.
Abstract

This paper presents a novel microfluidic chip for upconcentration of sub-100 nm nanoparticles in a flow using electrical forces generated by a DC or AC field. Two electrode designs were optimized using COMSOL Multiphysics and tested using particles with sizes as low as 47 nm. We show how inclined electrodes with a zig-zag three-tooth configuration in a channel of 20 µm width are the ones generating the highest gradient and therefore the largest force. The design, based on AC dielectrophoresis, was shown to upconcentrate sub-100 nm particles by a factor of 11 using a flow rate of 2-25 µL/h. We present theoretical and experimental results and discuss how the chip design can easily be massively parallelized in order to increase throughput by a factor of at least 1250.

Citing Articles

Poly(lactic-co-glycolic acid) nanoparticle fabrication, functionalization, and biological considerations for drug delivery.

Marecki E, Oh K, Knight P, Davidson B Biomicrofluidics. 2024; 18(5):051503.

PMID: 39296325 PMC: 11410388. DOI: 10.1063/5.0201465.


Advanced manufacturing of nanoparticle formulations of drugs and biologics using microfluidics.

Shen Y, Gwak H, Han B Analyst. 2023; 149(3):614-637.

PMID: 38083968 PMC: 10842755. DOI: 10.1039/d3an01739g.


Editorial for the Special Issue on Micromachines for Dielectrophoresis, Volume II.

Martinez-Duarte R Micromachines (Basel). 2023; 14(4).

PMID: 37421002 PMC: 10145136. DOI: 10.3390/mi14040769.

References
1.
Waheed W, Sharaf O, Alazzam A, Abu-Nada E . Dielectrophoresis-field flow fractionation for separation of particles: A critical review. J Chromatogr A. 2021; 1637:461799. DOI: 10.1016/j.chroma.2020.461799. View

2.
Demierre N, Braschler T, Linderholm P, Seger U, van Lintel H, Renaud P . Characterization and optimization of liquid electrodes for lateral dielectrophoresis. Lab Chip. 2007; 7(3):355-65. DOI: 10.1039/b612866a. View

3.
Zhao K, Peng R, Li D . Separation of nanoparticles by a nano-orifice based DC-dielectrophoresis method in a pressure-driven flow. Nanoscale. 2016; 8(45):18945-18955. DOI: 10.1039/c6nr06952e. View

4.
Zhou Y, Ma Z, Tayebi M, Ai Y . Submicron Particle Focusing and Exosome Sorting by Wavy Microchannel Structures within Viscoelastic Fluids. Anal Chem. 2019; 91(7):4577-4584. DOI: 10.1021/acs.analchem.8b05749. View

5.
Benhal P, Quashie D, Kim Y, Ali J . Insulator Based Dielectrophoresis: Micro, Nano, and Molecular Scale Biological Applications. Sensors (Basel). 2020; 20(18). PMC: 7570478. DOI: 10.3390/s20185095. View