» Articles » PMID: 30808370

Identification of Transcription Factor Binding Sites Using ATAC-seq

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2019 Feb 28
PMID 30808370
Citations 234
Authors
Affiliations
Soon will be listed here.
Abstract

Transposase-Accessible Chromatin followed by sequencing (ATAC-seq) is a simple protocol for detection of open chromatin. Computational footprinting, the search for regions with depletion of cleavage events due to transcription factor binding, is poorly understood for ATAC-seq. We propose the first footprinting method considering ATAC-seq protocol artifacts. HINT-ATAC uses a position dependency model to learn the cleavage preferences of the transposase. We observe strand-specific cleavage patterns around transcription factor binding sites, which are determined by local nucleosome architecture. By incorporating all these biases, HINT-ATAC is able to significantly outperform competing methods in the prediction of transcription factor binding sites with footprints.

Citing Articles

Epigenetic mechanisms regulating CD8+ T cell senescence in aging humans.

Turano P, Akbulut E, Dewald H, Vasilopoulos T, Fitzgerald-Bocarsly P, Herbig U bioRxiv. 2025; .

PMID: 39896543 PMC: 11785101. DOI: 10.1101/2025.01.17.633634.


GATA2 mutated allele specific expression is associated with a hyporesponsive state of HSC in GATA2 deficiency syndrome.

Largeaud L, Fregona V, Jamrog L, Hamelle C, Dufrechou S, Prade N Blood Cancer J. 2025; 15(1):7.

PMID: 39885120 PMC: 11782539. DOI: 10.1038/s41408-025-01213-z.


Efficient, scalable, and near-nucleotide-resolution profiling of protein occupancy in the genome with deaminases.

Chang L, Ren B Proc Natl Acad Sci U S A. 2025; 122(5):e2425203122.

PMID: 39869813 PMC: 11804588. DOI: 10.1073/pnas.2425203122.


ChromBPNet: bias factorized, base-resolution deep learning models of chromatin accessibility reveal cis-regulatory sequence syntax, transcription factor footprints and regulatory variants.

Pampari A, Shcherbina A, Kvon E, Kosicki M, Nair S, Kundu S bioRxiv. 2025; .

PMID: 39829783 PMC: 11741299. DOI: 10.1101/2024.12.25.630221.


3D genomic features across >50 diverse cell types reveal insights into the genomic architecture of childhood obesity.

Trang K, Pahl M, Pippin J, Su C, Littleton S, Sharma P Elife. 2025; 13.

PMID: 39813287 PMC: 11735026. DOI: 10.7554/eLife.95411.


References
1.
Li Z, Schulz M, Look T, Begemann M, Zenke M, Costa I . Identification of transcription factor binding sites using ATAC-seq. Genome Biol. 2019; 20(1):45. PMC: 6391789. DOI: 10.1186/s13059-019-1642-2. View

2.
Neph S, Stergachis A, Reynolds A, Sandstrom R, Borenstein E, Stamatoyannopoulos J . Circuitry and dynamics of human transcription factor regulatory networks. Cell. 2012; 150(6):1274-86. PMC: 3679407. DOI: 10.1016/j.cell.2012.04.040. View

3.
Buenrostro J, Wu B, Litzenburger U, Ruff D, Gonzales M, Snyder M . Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015; 523(7561):486-90. PMC: 4685948. DOI: 10.1038/nature14590. View

4.
Schep A, Buenrostro J, Denny S, Schwartz K, Sherlock G, Greenleaf W . Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res. 2015; 25(11):1757-70. PMC: 4617971. DOI: 10.1101/gr.192294.115. View

5.
Crawford G, Holt I, Whittle J, Webb B, Tai D, Davis S . Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 2005; 16(1):123-31. PMC: 1356136. DOI: 10.1101/gr.4074106. View