» Articles » PMID: 18243105

High-resolution Mapping and Characterization of Open Chromatin Across the Genome

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2008 Feb 5
PMID 18243105
Citations 816
Authors
Affiliations
Soon will be listed here.
Abstract

Mapping DNase I hypersensitive (HS) sites is an accurate method of identifying the location of genetic regulatory elements, including promoters, enhancers, silencers, insulators, and locus control regions. We employed high-throughput sequencing and whole-genome tiled array strategies to identify DNase I HS sites within human primary CD4+ T cells. Combining these two technologies, we have created a comprehensive and accurate genome-wide open chromatin map. Surprisingly, only 16%-21% of the identified 94,925 DNase I HS sites are found in promoters or first exons of known genes, but nearly half of the most open sites are in these regions. In conjunction with expression, motif, and chromatin immunoprecipitation data, we find evidence of cell-type-specific characteristics, including the ability to identify transcription start sites and locations of different chromatin marks utilized in these cells. In addition, and unexpectedly, our analyses have uncovered detailed features of nucleosome structure.

Citing Articles

Dual-directional epi-genotoxicity assay for assessing chemically induced epigenetic effects utilizing the housekeeping TK gene.

Yamada H, Odagiri M, Yamakita K, Chiba A, Ukai A, Yasui M Sci Rep. 2025; 15(1):7780.

PMID: 40044744 PMC: 11882845. DOI: 10.1038/s41598-025-92121-6.


Single-cell assay for transposase-accessible chromatin sequencing of human clear cell renal cell carcinoma.

Lu W, Liu Y, Li J, Huang S, Wen Z, Su C Sci Data. 2025; 12(1):334.

PMID: 40000710 PMC: 11861977. DOI: 10.1038/s41597-025-04666-w.


IGN: Invariable gene set-based normalization for chromatin accessibility profile data analysis.

Hu S, Xue H, Zang C Comput Struct Biotechnol J. 2025; 27:501-507.

PMID: 39931505 PMC: 11808601. DOI: 10.1016/j.csbj.2025.01.018.


A multi-modal transformer for cell type-agnostic regulatory predictions.

Javed N, Weingarten T, Sehanobish A, Roberts A, Dubey A, Choromanski K Cell Genom. 2025; 5(2):100762.

PMID: 39884279 PMC: 11872434. DOI: 10.1016/j.xgen.2025.100762.


ChromBPNet: bias factorized, base-resolution deep learning models of chromatin accessibility reveal cis-regulatory sequence syntax, transcription factor footprints and regulatory variants.

Pampari A, Shcherbina A, Kvon E, Kosicki M, Nair S, Kundu S bioRxiv. 2025; .

PMID: 39829783 PMC: 11741299. DOI: 10.1101/2024.12.25.630221.


References
1.
Agarwal S, Rao A . Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity. 1999; 9(6):765-75. DOI: 10.1016/s1074-7613(00)80642-1. View

2.
Crawford G, Holt I, Mullikin J, Tai D, Blakesley R, Bouffard G . Identifying gene regulatory elements by genome-wide recovery of DNase hypersensitive sites. Proc Natl Acad Sci U S A. 2004; 101(4):992-7. PMC: 327130. DOI: 10.1073/pnas.0307540100. View

3.
Beissbarth T, Speed T . GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics. 2004; 20(9):1464-5. DOI: 10.1093/bioinformatics/bth088. View

4.
Kawaji H, Kasukawa T, Fukuda S, Katayama S, Kai C, Kawai J . CAGE Basic/Analysis Databases: the CAGE resource for comprehensive promoter analysis. Nucleic Acids Res. 2005; 34(Database issue):D632-6. PMC: 1347397. DOI: 10.1093/nar/gkj034. View

5.
Sabo P, Humbert R, Hawrylycz M, Wallace J, Dorschner M, McArthur M . Genome-wide identification of DNaseI hypersensitive sites using active chromatin sequence libraries. Proc Natl Acad Sci U S A. 2004; 101(13):4537-42. PMC: 384782. DOI: 10.1073/pnas.0400678101. View