» Articles » PMID: 22153082

Comprehensive Genome-wide Protein-DNA Interactions Detected at Single-nucleotide Resolution

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2011 Dec 14
PMID 22153082
Citations 456
Authors
Affiliations
Soon will be listed here.
Abstract

Chromatin immunoprecipitation (ChIP-chip and ChIP-seq) assays identify where proteins bind throughout a genome. However, DNA contamination and DNA fragmentation heterogeneity produce false positives (erroneous calls) and imprecision in mapping. Consequently, stringent data filtering produces false negatives (missed calls). Here we describe ChIP-exo, where an exonuclease trims ChIP DNA to a precise distance from the crosslinking site. Bound locations are detectable as peak pairs by deep sequencing. Contaminating DNA is degraded or fails to form complementary peak pairs. With the single bp accuracy provided by ChIP-exo, we show an unprecedented view into genome-wide binding of the yeast transcription factors Reb1, Gal4, Phd1, Rap1, and human CTCF. Each of these factors was chosen to address potential limitations of ChIP-exo. We found that binding sites become unambiguous and reveal diverse tendencies governing in vivo DNA-binding specificity that include sequence variants, functionally distinct motifs, motif clustering, secondary interactions, and combinatorial modules within a compound motif.

Citing Articles

Structural insights into a highly flexible zinc finger module unravel INSM1 function in transcription regulation.

Zhou H, He X, Xiong Y, Gong Y, Zhang Y, Li S Nat Commun. 2025; 16(1):2162.

PMID: 40038295 PMC: 11880201. DOI: 10.1038/s41467-025-57478-2.


The type of carbon source not the growth rate it supports can determine diauxie in Saccharomyces cerevisiae.

Huo Y, Danecka W, Farquhar I, Mailliet K, Moses T, Wallace E Commun Biol. 2025; 8(1):325.

PMID: 40016532 PMC: 11868555. DOI: 10.1038/s42003-025-07747-z.


RNA-Seq and ChIP-Seq Identification of Unique and Overlapping Target Genes and Pathways Regulated by TBX4 in Human Pulmonary Fibroblasts and Pericytes.

Cai Y, Yan L, Cogan J, Hedges L, Nunley B, Negretti N Pulm Circ. 2025; 15(1):e70058.

PMID: 39980707 PMC: 11839389. DOI: 10.1002/pul2.70058.


An AT-hook transcription factor promotes transcription of histone, spliced-leader, and piRNA clusters.

Wang Y, Hertz H, Pastore B, Tang W Nucleic Acids Res. 2025; 53(4).

PMID: 39945323 PMC: 11822377. DOI: 10.1093/nar/gkaf079.


Interpreting the CTCF-mediated sequence grammar of genome folding with AkitaV2.

Smaruj P, Kamulegeya F, Kelley D, Fudenberg G PLoS Comput Biol. 2025; 21(2):e1012824.

PMID: 39903776 PMC: 11828424. DOI: 10.1371/journal.pcbi.1012824.


References
1.
Dermitzakis E, Clark A . Evolution of transcription factor binding sites in Mammalian gene regulatory regions: conservation and turnover. Mol Biol Evol. 2002; 19(7):1114-21. DOI: 10.1093/oxfordjournals.molbev.a004169. View

2.
Phillips J, Corces V . CTCF: master weaver of the genome. Cell. 2009; 137(7):1194-211. PMC: 3040116. DOI: 10.1016/j.cell.2009.06.001. View

3.
Biddie S, John S, Sabo P, Thurman R, Johnson T, Schiltz R . Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol Cell. 2011; 43(1):145-55. PMC: 3138120. DOI: 10.1016/j.molcel.2011.06.016. View

4.
Jothi R, Cuddapah S, Barski A, Cui K, Zhao K . Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res. 2008; 36(16):5221-31. PMC: 2532738. DOI: 10.1093/nar/gkn488. View

5.
Venters B, Pugh B . A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome. Genome Res. 2009; 19(3):360-71. PMC: 2661807. DOI: 10.1101/gr.084970.108. View